
Using Plant Epidemiological Methods To Track
Computer Network Worms

Rishikesh Pande

Thesis submitted to the faculty of Virginia Polytechnic Institute and State University in
partial fulfillment of the requirements for the degree of

Master of Science
in

Computer Science

Dr. James Arthur
Mr. Randy Marchany

Dr. T. M. Murali

May 6, 2004
Blacksburg, Virginia

Keywords: network worms, computer viruses, plant epidemiology, spatial spread

Using Plant Epidemiological Methods To Track Computer
Network Worms

Rishikesh Pande
Advisors: Mr. Randy Marchany

Dr. James Arthur

Abstract:
Network worms that scan random computers have caused billions of

dollars in damage to enterprises across the Internet. Earlier research has

concentrated on using epidemiological models to predict the number of

computers a worm will infect and how long it takes to do so. In this research, one

possible approach is outlined for predicting the spatial flow of a worm within the

local area network (LAN).

The approach in this research is based on the application of mathematical

models and variables inherent in plant epidemiology. In particular, spatial

autocorrelation has been identified as a candidate variable that helps predict the

spread of a worm over a LAN. This research describes the application of spatial

autocorrelation to the geography and topology of the LAN and describes the

methods used to determine spatial autocorrelation. Also discussed is the data

collection process and methods used to extract pertinent information. Data

collection and analyses are applied to the spread of three historical network

worms on the Virginia Tech campus and the results are described.

Spatial autocorrelation exists in the spread of network worms across the

Virginia Tech campus when the geographic aspect is considered. If a new

network worm were to start spreading across Virginia Tech’s campus, spatial

autocorrelation would facilitate tracking the geographical locations of the spread.

In addition if an infection with a known value of spatial autocorrelation is

detected, the characteristics of the worm can be identified without a complete

analysis.

iii

Acknowledgment

I thank my advisors Randy Marchany and Dr. James Arthur for all

their help and advice. My research and this thesis would never have been

complete without their guidance, patience and direction. I also thank Dr. T.

M. Murali for serving on my committee, as well as providing insight on

various aspects of the research.

I especially thank Randy Marchany for being a friend and mentor.

His belief in this research and his dedication helped me throughout my

study. I learned several things from him that I will carry with me for the rest

of my life.

I also express my sincerest thank you to Dr. Arthur for his

conviction in my work. His insights into several topics have shaped the

progress of this research.

In addition, this research would never have been completed without

the diligent work of the people at Dshield, especially Mr. Johannes Ullrich

and Mr. Alan Paller. I would like to extend my gratitude to them. In

addition, I thank Mr. Babacar Wagne for his numerous contributions to the

local Dshield project.

Last but not least, I would like to thank my parents and friends for

their support and encouragement. Without them, this research would have

simply remained a thought at the back of my mind.

iv

Table of Contents

1 Introduction... 1
1.1 Motivation... 1
1.2 Problem... 4
1.3 Proposed Solution.. 8

2 Background... 10
2.1 Computer Epidemics ... 11
2.2 Network Worms .. 12
2.3 Spreading Mechanisms.. 13
2.4 Signatures.. 16
2.5 Containment .. 19
2.6 Intrusion Detection Systems .. 23
2.7 Biological Epidemiology ... 26
2.8 Computer Epidemic Models .. 28

3 Computer vs. Biological Epidemics... 30
3.1 Similarities .. 31
3.2 Differences .. 35
3.3 Extending Biological Parameters ... 37

4 Evaluation Parameter .. 40
4.1 Spatial Autocorrelation.. 41
4.2 Measuring Spatial Autocorrelation... 43
4.3 Calculating Spatial Autocorrelation ... 46
4.4 Neighborhood.. 49

4.4.1 Geographical.. 50
4.4.2 Topological.. 53

5 Data Analysis .. 57
5.1 Tools ... 58

5.1.1 Data Storage Tools... 59
5.1.2 Analysis Tools ... 60
5.1.3 Statistical tools... 63

5.2 Data Collection.. 65
5.3 Data Analysis .. 68
5.4 Results... 70
5.5 Analysis of Results .. 72

5.5.1 Topological.. 72
5.5.2 Geographical.. 73

6 MIDS.. 74
6.1 Design ... 76

6.1.1 Agents ... 78
6.1.2 Data aggregator.. 80
6.1.3 Analyzer .. 82
6.1.4 Spatial analyzer/predictor... 84
6.1.5 Notification Component... 86

6.2 Example Usage Scenario ... 87

v

7 Conclusions and Future Work ... 89
7.1 Conclusions... 89
7.2 Future Work .. 93

References .. 94
Appendix .. 100

Appendix A... 100
Appendix A.1: main.cpp.. 100
Appendix A.2: grid.cpp ... 104
Appendix A.3: db_test.cpp .. 107
Appendix A.4: checks.cpp... 117

Appendix B... 119
Appendix B.1: ip2vtgrid.php ... 119
Appendix B.2: ip2vttopo.php... 122

Appendix C... 125
Appendix C.1: geostat.sas ... 125
Appendix C. 2: topostat.sas ... 126

 Appendix D... 128
 Appendix D.1: Permission to reproduce Figure 2... 128

 Appendix D.2: Permission to reference Travis et al. (2003)................................. 130

vi

List of Figures

Figure 1. Blaster Command shell attack signature ... 18
Figure 2. Code Red v2 time-series spread.. 19
Figure 3. Dshield Distributed Intrusion Detection System ... 24
Figure 4. Virus transport mechanism in plant epidemics.. 33
Figure 5. Worm transportation in computer networks.. 34
Figure 6. No spatial autocorrelation... 42
Figure 7. Highest value of spatial autocorrelation.. 42
Figure 8a. Grid space layout.. 46
Figure 8b. Weight matrix for grid square 5.. 46
Figure 9. Neighborhood definitions... 50
Figure 10. Rooks neighborhood with spatial lag 2 ... 50
Figure 11. 1:100 scaled map of Virginia Tech ... 51
Figure 12. Tree hierarchies of a computer network.. 53
Figure 13. Subnet structure under a core router ... 54
Figure 14. Star network topology .. 55
Figure 15. Example subnet structure ... 55
Figure 16.Example SQL query.. 59
Figure 17. Virginia Tech local Dshield user interface .. 75
Figure 18. Architecture of MIDS... 77
Figure 19. Threat level determination.. 83

vii

List of Tables

Table 1. Similarities between plant and computer epidemics ... 35
Table 2. Time periods for data collection .. 65
Table 3. Spatial autocorrelation results for the topological case..................................... 70
Table 4. Spatial autocorrelation results for geographical case .. 70
Table 5. Agreement test for topological case ... 71
Table 6. Agreement test for geographical case... 71

1 Introduction

1.1 Motivation

In the 8th annual Computer Crime and Security

Survey [Computer Security Institute, 2003], 92% of all respondents

reported cyber crimes and other information security breaches. Recent

virus/worm attacks on the Internet have incapacitated several utility

and other important services. Computer viruses caused a loss of $55

billion in 2003 [Reuters, 2004], almost double the loss in damages in

previous years. The cost is expected to increase in coming years.

Early viruses spread from computer to computer via floppy disks

and other manual disk installations. For example, the (c) Brain virus

overwrote a part of the boot disk and took almost a year [Paquette,

2000] to spread across the world.

The Internet allows viruses and worms to spread to a large

number of systems quickly. The Morris worm in 1988 was the first

Internet worm and used vulnerabilities in several programs to spread.

The worm infected 10% of the computers connected to the Internet at

that time [Orman, 2003]. The SQL Slammer worm of 2003 [Travis et

al., 2003] also used vulnerability inherent in software and affected 15%

of the computers connected to the Internet. However, the total number

of computers connected to the Internet in 2003 was significantly

greater than the number of computers connected to the Internet in

1988; thus, the SQL Slammer worm caused far greater damage.

The damage from network worms is not limited to financial

losses and the public embarrassment to commercial enterprises and

universities. Essential services, including utility services [Schneier,

2

2003] and aircraft safety [Airwise News, 2003], have been interrupted

because of the effects of network worms.

Unfortunately, system and network administrators are not able

to control losses because no warning signals are generated of an

impending attack. Worms like the SQL Slammer worm [Travis et al.,

2003] of 2003 spread across the Internet in 10 minutes. Most

administrators did not have sufficient time to secure their networks

against this worm.

Preventative measures provide the most effective protection—in

this case, patching the vulnerable systems before the worm is

released. Since no warnings occur, these measures are inherently

reactive in nature. Further, in large companies and organizations with

mobile users, applying and supporting a patch to systems can become

a systems management nightmare [Bautts, 2003].

The spread of a worm depends on the characteristics of the

worm (such as the exploit it uses and the IP number generation

technique), as well as the susceptibility of the computer to the exploit

the worm uses. Most modern day worms use a self-propagation

mechanism to move from computer to computer. These worms can

either self-trigger or make use of an external trigger. For example, in

the case of the SoBig virus, a user had to open an infected e-mail

attachment before the virus could infect the computer.

In the case of a self-propagating worm, no user action is

necessary to infect the computer. Thus, the spread of these worms is

rapid. Such a worm generally uses a random IP generation technique

to move to its next computer victim. This type of worm uses the first

one or two bytes of the IP number of the infected machine to scan for

the next machine to infect. For example, the Code Red II worm had a

3

three-in-eight chance of using the first two bytes of the infected

machine’s IP address to scan for the next IP address to infect [Bautts,

2003]. In effect, IP address generation is not truly random. Determining

the flow of computer worms in the network becomes critical to the

counter measures selected. In some way this thinking is an oxymoron;

while some computer viruses spread using random IP generation

techniques, this research is trying to determine if the spread of the

virus follows a pattern.

Some form of automated computer program performs most

computer attacks. Knowing the network path pattern the worms follow

would help build an early warning system for the subnet.

For the purposes of this thesis, I concentrate my efforts on self-

propagating worms that spread from computer to computer by

generating random IP numbers. The goal of this research is to find

methods for predicting the track that widespread computer

viruses/worms in the network will follow, so that suitable counter

measures can be taken.

4

1.2 Problem

Every network worm exploits a different vulnerability and

attempts to spread in a new way so that it can defeat the computer and

network defenses while affecting the maximum number of computers.

Some of these system vulnerabilities may have been announced from

1 year to 1 day in advance of the release of the worm. However, the

time from disclosure of a vulnerability to the release of a virus that

exploits the vulnerability is rapidly decreasing.

Moreover, each virus uses different propagation mechanisms,

making it difficult to predict the kind of propagation mechanism the

virus will use. A certain class of viruses will spread differently from

another class simply because the two classes use different IP address

generation techniques.

System administrators, though, have no warning of an

impending worm until it hits their network, and often times it is then too

late to react. In the case of fast propagating worms, system

administrators do not get sufficient notice about the activity of a worm

or a virus in the networks until after the incident has passed.

Additionally, most small-scale enterprises do not have the resources to

invest in round-the-clock support of their systems. Thus, if a virus

spreads during off-office hours or when the administrators are not in

contact range, the state of the system is volatile.

The extent of damage from each worm increases over time.

Some measures to quell the damage have been in existence for some

time. Most popular among these measures is an Intrusion Detection

System (IDS), which is fitted with a certain number of rules to detect an

5

intrusion. The IDS notifies users of an intrusion, depending on their

pre-defined rules, and depends on user action to stop the intrusion.

An Intrusion Prevention System (IPS) extends the IDS by

coupling an IDS with a firewall or some type of limiting device to block

the propagation of the intrusion. However, both IDS and IPS are

plagued by a high number of false positives (detecting an intrusion

when one is not present) and false negatives (failure to report an

intrusion when one is present). Some IDS also have to be trained in a

secluded environment to enable the IDS to recognize the normal state

of the system and, thus, detect the presence of an anomaly in a real

environment.

The IDS tend to perform better with larger quantities of training

data than with the small amounts of data that one subnet provides.

Therefore, several Internet–wide Distributed Intrusion Detection

Systems (DIDS) now exist [SANS Institute, 2001; Dshield, 2001;

Baldwin, 2001] and have proven to be early indicators for Internet-wide

intrusion attacks.

The DIDS are widely accepted as standards for detecting

intrusions on a worldwide scale. They receive data from various

sources, such as personal firewall logs, enterprise IDS logs, and

educational institutes. An analysis is carried out on the data and the

required authorities are contacted via e-mail. As is obvious, the more

widespread the data collection agents are, the better the IDS will be

able to predict intrusions.

If a DIDS has a large number of widespread data collection

agents, one can follow the flow of the virus. However, unfortunately, it

is still not possible for the DIDS (I refer to the global Internet-wide

DIDS as DIDS in this thesis) to predict the spread of self-propagating

6

viruses across the Internet. If this capability existed, a system or

network administrator could be warned before the virus spread out of

control. The administrator could change the network configurations to

disallow harmful traffic from flowing into the network and, thus, save

the organization from damages.

No methods are available to predict how the worm will travel.

Some network and human characteristics may cause a certain

ordering in the method that the computer viruses flow across the

network. To complicate matters, several ways exist for looking at the

network structure of a local area network. An obvious division is the

hierarchical network structure of the LAN (local area network). An

alternative is the geographical division, reflecting how the networks are

geographically located.

If the spread of the worm can be determined by using a model,

strategies to impede the spread of the virus can also be put in place,

as in the case of biological epidemics. For example, during the 2003

SARS epidemic (SARS is Severe Acute Respiratory Syndrome [Center

for Disease Control, 2003b]), the United States was placed on high

alert after SARS cases were detected in the neighboring country of

Canada. Human traffic to and from the major SARS infected areas

(China, Hong Kong, Taiwan, etc.) was carefully monitored for signs of

the SARS infection.

As mentioned earlier, most DIDS can detect a large-scale attack

across the Internet and can immediately warn their clients. If multiple

network administrators each control their individual subnets, the time

required to dissiminate information to the people making the changes

is vital. An aggressive notification method that is tempered by the

degree of the intrusion level can resolve this issue. The previously

7

mentioned issue of determining the spread of the network worm needs

to be resolved before the notification strategy is determined.

The problem that this research intended to solve can be summarized

as:

"Determine the spatial spread of computer network worms by applying

parallel strategies from plant epidemiology."

8

1.3 Proposed Solution

Network worms spread aggressively across the Internet, and

each new worm increases the damage caused to enterprises and

undermined the global economy. Network administrators are at a loss

to determine when, and which, systems will be affected by these

worms. Overly general policies are harmful because they block

legitimate transactions from taking place. For example, a policy to stop

File Transfer Protocol (FTP) applications may lead to breakdown of

applications that rely on this service.

This thesis proposes one approach to addressing the problem

by determining the spatial flow of the virus in LANs. Parameters and

models from other fields, such as climatology and epidemiology, were

examined to determine those that best match the characteristics of

computer epidemics.

After the parameters were determined, firewall log data was

collected from the D-shield [Ullrich, 2000] DIDS for the periods of

infection for the Linux Slapper [Symantec Corporation, 2002], SQL

Slammer [Travis et al., 2003] and MS Blaster worms [Symantec

Corporation, 2003]. The Virginia Tech LAN was the focus of the

analysis of the spread of the virus.

Data analysis was conducted to determine the parameters for

the spatial flow of each virus. The primary parameter selected for study

is the spatial autocorrelation parameter, which is widely used in plant

epidemiology to predict the spread of plant viruses [Cliff and Ord,

1981]. Spatial autocorrelation was evaluated to analyze its applicability

to computer networks. This parameter will assist in predicting the

topological regions on the local area network that will be most

susceptible to the worm.

9

This model was then used as part of a proposed design for an

IDS. The design of such a system, currently code-named ‘Middle-

range Intrusion Detection System' (MIDS), is proposed in this thesis.

Background information is given on computer and biological

epidemics, how they compare to each other, the specific parameters of

interest, and the reasons for these choices. Presented next are the

data collection, the analysis conducted, and the results obtained.

Finally, a design is proposed for an IDS, which works in collaboration

with a global DIDS. Such an IDS will assist in predicting the flow of the

virus and then it will take appropriate actions based on the severity

level of the worm. Conclusions and future work are also detailed.

10

2 Background

This section introduces background information vital to this

research. A definition is given for computer epidemics and causes such

epidemics are listed. Section 2.2 cites a particular case of computer

viruses, the network worms. Section 2.3 details the spreading

mechanisms used by network worms and its effects. Network worms

spread in a manner that leaves behind a signature. Section 2.4 details the

cause of these signatures. Containment strategies for network worms are

outlined in Section 2.5. An IDS helps determine the occurrences of

network worms, and a brief overview into the major types of IDS is

presented in Section 2.6. A broad overview of biological epidemiology is

presented in Section 2.7. Finally, computer epidemic models based on

biological epidemics are presented in Section 2.8

11

2.1 Computer Epidemics

The word "epidemic" has been defined as "an outbreak of a

contagious disease that spreads rapidly and widely” [American

Heritage Dictionary, 2000] In a similar manner, a computer epidemic

could be defined as “a computer virus [Symantec, 2000a] or worm

[Symantec, 2000b] spreading rapidly and extensively by infection and

affecting many individual computers in an area or a population at the

same time.”

Computer epidemics were first investigated by Kephart, Chess

and White [Kephart, Chess and White, 1993], who described how

computer viruses propagate. It was found that computer epidemics

spread in a manner similar to biological epidemics. The viruses

analyzed at the time were primarily spread via floppy disks. Most

viruses now spread via the Internet. Therefore, the spread patterns of

current epidemics are different from the viruses that were analyzed by

these investigators.

Drawing a parallel to biological epidemics, computer epidemics

spread differently because viruses belong to different classes. This

research primarily considers computer epidemics caused by a certain

class of computer viruses called network worms. Network worms tend

to spread from one host to another by producing a new random IP

(Internet Protocol) address, and then attempting to infect the host that

has the generated IP address. This propagation mechanism continues

until all susceptible machines have been infected.

12

2.2 Network Worms

Robert Morris, a Cornell University computer science graduate

student, released the first public Internet worm in 1988. The Morris

Worm [Orman, 2003], as it became known, exploited known flaws in

the finger and sendmail services of Unix systems, as well as in the

common webs of trust inherent in the rlogin facility. The worm’s only

activity was to replicate itself in as many hosts as possible. The Morris

worm infected roughly 10% of the Internet computers and cost an

estimated $100 million to clean up.

Since then, several network worms have been released on the

Internet with varying levels of success. Current estimates set the cost

of damages due to recent worms in the billions of dollars [Reuters,

2004]. The common factor is that all are network worms. The most

important characteristic that distinguishes network worms from other

replicating programs is that they use the Internet backbone to spread

from one computer to the next.

Different worms in the past have used various attack vectors.

Some of the common attack vectors include the Remote Procedure

Call (RPC) service, Instant messenger, and e-mail services [Paquette,

2000]. These services frequently are run on client machines. Since e-

mail and instant messenger viruses depend on human behavior

(opening of an attachment, clicking on a malicious link), the spread of

e-mail viruses are highly dependent on the contact structure of human

beings. On the other hand, self-propagated viruses depend on the

existence of a flaw in the computer itself—no human action is

necessary.

13

2.3 Spreading Mechanisms

The spreading mechanism is responsible for the selection of the

next target of infection for the worm. Several different methods exist for

the spread of viruses [Balthrop et al., 2004], however, network worms

transmit by generating random IP addresses. Worms use various

techniques to generate a random IP address. A good pseudo-random

number generator with a good starting seed is a typical method used to

produce an IP address of the form A.B.C.D where A, B, C, and D are

random numbers between 0 and 255. A variant of the Unix srand ()

function [Unix manual pages, 2003] is a popular method for producing

the initial seed. However, this method has been shown to have

deficiencies in the way that seed is generated [Garfinkel, Spafford and

Schwartz, 2003]. As a result, the random generation technique does

not produce IP addresses over a wide range. Thus, virus writers take

care while writing the generator because, if the seed is not random, the

IP addresses generated may be only a partial set and, thus, adversely

affect the spread.

Recent viruses have used new methods of generating a good

random seed and have used more conservative approaches, such as

restricting the randomization to the same sub-network as the infected

computer. This method has also proven to be quite successful, as in

the case of the Blaster worm. The worm writer used a random number

generator that produced an IP address within the same Class B subnet

40% of the time and a completely random IP address 60% of the time.

However, most IP addresses that are formed randomly by the

above method do not have live hosts connected to them. In fact, most

system administrators utilize only 30% of the allocated address space

[Bautts, 2003]. Therefore, a large number of infection attempts do not

14

produce a result. Consequently, the only way a virus can cover the

entire community of the Internet is by producing a large number of

infections as fast as possible. This strategy leads to instability in the

very medium that the virus uses for transmition: the Internet. Previous

worm occurrences have shown that a Blaster-style worm mostly affects

the working of the infrastructure on the Internet.

The SQL Slammer worm infected 15% of all hosts connected to

the Internet. The amount of traffic generated by this worm caused

many routers to fail and crash. Ironically, it stopped its own growth by

overwhelming the network. However, the SQL Slammer was deemed

the fastest spreading worm in history because of the connectionless

protocol it used to transmit the infection (UDP) and its relatively small

size (369 bytes).

All other worms released prior to January 2004 used the

connection oriented, TCP (Transmission Control Protocol) protocol,

which requires the targeted computer to respond to the infection

computer. Once the target computer produces a response, the infected

computer transmits the malicious code, which tries to exploit

vulnerabilities in the computer software. If no computer exists at the

generated IP or the port is closed, the virus receives no response.

In order to reach as many computers as possible, a network

worm uses a multi-threading approach in attempting to infect a pre-

defined finite number of computers. The code for the Blaster worm

produced a maximum of 20 threads that attempted to infect other

computers. If the computer at the requested IP responded, an infection

was attempted. If no message was received after 5 minutes, the thread

terminated.

15

Even if no computer exists at the random IP chosen, a TCP

SYN packet is still transmitted on the network. This large number of

packets on the Internet causes a SYN flood, which is a form of denial

of service attack because network devices receive information faster

than they can process it. Due to this heavy flood, normal packets

cannot be sent on the Internet; thus, valid information fails to be

delivered.

This heavy flood of network activity can also cause critical

systems to collapse and cause damage to emergency and utility

services [Schneier, 2003]. Such a collapse in primary infrastructures of

the Internet adds to the problems occurring in the spread mechanism.

In addition to heavy traffic, some of the available routes shut down.

This paucity of available routes leads to an avalanche effect , and the

entire Internet comes to a standstill.

The Warhol worm [Staniford, Paxson and Weaver, 2002] can

spread across the Internet in 15 minutes to one hour. The spreading

mechanism of such a worm is highly specialized because it uses hit

lists and predefined IP address ranges. However, no practical

implementation of a Warhol worm has occurred although some experts

[Broersma, 2003] contend that the SQL Slammer worm was an

implementation of such a worm.

16

2.4 Signatures

Network worms exploit vulnerabilities in the software on the

resident system to connect to other machines with the purpose of

infecting them. As worms propagate from one machine to the next

across the Internet, they use the same method to move from the first

computer to the second, from the second to the third, and so on and so

forth. This method invariably leaves a pattern on the network where the

infecting computer is located. Such a pattern is called a network

signature. A network signature is a pattern in Internet traffic that

identifies the traffic flowing through the network. When this signature is

referred to as an intrusion attempt, such as that made by a worm, it is

called an attack signature. Attack signatures represent the specific bits

of program code that each virus or worm carries [Salkever, 2001].

The following example illustrates this point further. If traffic on

the street is observed from the top of a skyscraper, the type of car on

the street can be identified– coupe, mini-van, truck, etc., but it would

be very difficult to identify the exact car (license plate, occupants, etc).

However, if the observation details a line of 3 coupes, followed by a

mini-van, followed by 2 trucks over and over again, such a pattern is

easily recognizable. The pattern of 3 coupes, a mini-van, and 2 trucks

would form a signature.

In the same way, a network administrator cannot identify every

single packet flowing through the core routers. However, if the

administrator sees strings of suspicious packets forming a signature

over and over again, the cause of the signature should be inspected. If

the packets within the trace are an attempt to attack another computer,

this signature would form an attack signature.

17

Network signatures can be primarily detected in two separate

ways [Frederick, 2002]: packet grepping and protocol analysis.

Packet grepping is a static intrusion detection method; the IDS

performs pattern matching on individual packets flowing through the

network with predefined signatures. This method is static because the

state of the connection is not stored. However, new or unknown

intrusions will not be tracked in this method.

Protocol analysis is a slightly more advanced method of

intrusion detection; an initial or stable state of the system is defined.

Instead of checking individual packets, the IDS checks entire

connections for determining what the source system is attempting

based on predefined signatures. If the attempt is something the IDS

has seen before and deems as a normal connection, it allows the

connection to flow through. If not, the IDS raises an alert. As can be

inferred, an approach performing stateful packet inspection is slower

and more complicated; therefore, it is sparingly used.

The attack signatures for a worm may be different for both

approaches. Protocol analysis generally requires complicated attack

signatures called profile-based signatures, based on Markov models.

Packet grepping requires attack signatures with transport protocol

(TCP/ UDP) information, that is, important characteristics such as port

number, packet length, window size, etc. Packet grepping, however

can block valid traffic if that traffic has characteristics matching the

attack signature.

Attack signatures are viewed differently, depending on the IDS

and the developer of the IDS. Most IDS have the facility to construct a

user-defined attack signature if some unwanted traffic is noticed on the

network. For example, a particular network wanting to stop all telnet

18

requests coming in after a port scan can configure an attack signature

based on these characteristics in the IDS and distributes it. A sample

network signature from the Snort [Snort Network Intrusion Detection

System, 2000] network signature database is shown in Figure 1. This

sample network signature shows different TCP flags that the IDS

checks; if matches occur, the log message on the last line is recorded

and displayed in the event log.

Name: Blaster Worm Command Shell Attack V1 -NG
Group: Host Services
Active-Flag: 1
Priority: 3
Input-Source: 1
Dest-Port: 4444
Scan-String: tftp *0* GET msblast.exe
Scan-End: 0
Case-Sensitive: 1
Compact-Spaces: 0
Action: 4
Log-Message: [~SENSOR] - Blaster Worm Command Shell Attack from ~SRCIP

Figure 1. Blaster command shell attack signature

19

2.5 Containment

Most computer viruses including network worms initially spread

slowly, achieve a critical mass, and then spread rapidly across the

Internet. The number of new infections eventually levels for one of two

primary causes: the worm achieves its critical mass or the preventive

measures become effective. A worm reaches its critical mass when it

has infected as many computers as it can by using a random scanning

algorithm. Network administrators generally initiate preventive

measures when they are informed of a worm. Figure 2 illustrates the

number of infected hosts in a subnet of the Internet during the Code

Red v2 epidemic of July 2001 [Moore and Shannon, 2001].

Figure 2. Code Red v2 time-series spread

20

Korzyk [1988] developed a time-series forecasting model for

predicting Internet security threats. This model is based on the

assumption that after a certain time interval, the Internet weathers the

effects of a network worm. Further work in this area has led to an

effective measurement methodology for a time-series model of a

network worm [Yurcik, Korzyk, and Loomis, 2000].

The goal of worm containment, in a broad sense, is to recognize

(either on end systems or in the network traffic) that a worm is

spreading and to disrupt its spread before it can cause widespread

harm [Staniford, 2003]. However, this goal cannot always be achieved,

and counter measures, including patching, upgrading, firewalling and

disconnection after a worm incident, are still widely used.

In principal, counter measures can quickly reduce, or even stop

the spread of infection, thereby mitigating the overall threat and

providing additional time for more heavyweight treatment measures to

be developed and deployed.

Cleaning up after a worm incident is an example of reactive

security in an organization. However, proactive security, including

immediate upgrading and patching of systems has proven costly in

some enterprises because it may break some critical running

applications. A mix of proactive and reactive security is considered a

good approach where new patches and upgrades are verified on test

systems before being applied to the critical system [Cheswick et al.,

2003].

Based on the classical Kermack-McKendrick epidemic model

[Freunthal, 1980], researchers have formulated a two-factor model

[Zou et al., 2002] for the spread of a network worm. This model leads

to a better understanding and prediction of the scale and speed of the

21

spread of network worms. This model takes into account the human

countermeasures including removing both susceptible and infectious

computers from the Internet after systems and network administrators

learned of the spread of the Code Red v2 worm. As more people learn

of a worm, an increasing number implement some form of counter

measure–patching or upgrading susceptible computers, setting up

firewalls on edge routers, or simply disconnecting their systems from

the Internet.

Two primary containment strategies have proved effective

[Moore et al., 2003]: content filtering and address blacklisting. Address

blacklisting is an extension of spam lists where specific IP addresses

are blacklisted and all transactions from that specific IP are dropped.

Content filtering is an advanced technique where the network packets,

which contain malicious code, are identified and dropped. Intrusion

Detection Systems generally use some form of a content filtering

mechanism. Bayesian filtering algorithms have been used for content

filtering and generally yield a better output than address blacklisting

methods by an order of magnitude. However, they are also

computationally intensive.

Nojiri et al. [2003] propose a friend system for co-operatively

mitigating huge intrusion incidents such as a worm epidemic.

Cooperating members communicate with others by a "friend protocol"

that spreads attack reports to potentially vulnerable uninfected sites.

However, during worm epidemic conditions, the network itself is under

duress. Adding more traffic to the networks creates a race condition

where protocol traffic and worm traffic compete for the same

resources.

Williamson [2002] suggests using virus throttling for worm

containment. Virus throttling involves observing the type pf connections

22

that a machine makes with a new machine under normal conditions

(generally low level below 0.5 – 1Hz). In the same manner, a worm

makes high-level connections to new machines (for example, the Code

Red virus made connections at the rate of approximately 200Hz

[Williamson, 2002]) Once these facts are gathered, additional software

can be implemented in the network stack of an operating system that

limits the rate that a host can make outbound connections to new hosts

(new in the sense of not being in a cache of recently visited hosts). An

obvious limitation of this technique is that, if the worm is able to get

system access on the host, it can disable the filtering mechanism and,

thus, spread unchecked.

The Counter Malice product [Silicon Defense Inc., 2002]

operates by extending the research of Williamson [2002] to a network

device. The device makes the network more resilient to the worm;

however, the worm must first infect the network that has the device

before the device can impede the flow of the virus.

23

2.6 Intrusion Detection Systems

Several methods to counter the emergence of worms have been

investigated. Prominent among these are the network-based IDS,

which monitor the network for any suspicious activity. When such an

activity is discovered, it is immediately reported via a pre-determined

notification method.

The idea of a DIDS has been considered since the late 1980s.

However, not until the Internet connected computers across the globe

was the importance of correlated data from various agents understood.

Correlated data helps in understanding major occurrences of

intrusions. For this reason, large-scale DIDS were developed in the

late 1990s [Inella, 2001]. Robbins [2002] outlines the primary reasons

for moving from individual IDS to a DIDS.

Distributed Intrusion Detection Systems proved effective in the

rapid assessment of virus activity across the Internet. A good example

is the detection of the 2001 Lion worm at the Internet Storm Center at

the SANS (SysAdmin, Audit, Network Security) Institute [SANS,

2001a]. Distributed Intrusion Detection Systems are now widely

accepted as standards for detecting intrusions on a worldwide scale.

They receive data from various sources, such as personal firewall logs,

enterprise IDS logs and educational institutions. The data are analyzed

and the required authorities are contacted via e-mail. This strategy

helps many ISP and domain owners to identify computers on their

networks with malicious software. An example of such a system is

shown in Figure 3.

24

Figure 3. Dshield Distributed Intrusion Detection System

Unfortunately, DIDS still cannot predict the spread of viruses

across the Internet. However, the detection and prediction of the

movements of these viruses within a LAN the data management

systems need in deciding their next course of action. For example, if

subnets P and Q have been attacked and a prediction mechanism

indicates the possibility of subnets A and B being under immediate

threat, the management system can choose to alert the network

administrators of those subnets with an emergency message. At the

same time, the network administrators of the already infected subnets

can be notified to start disaster recovery.

The problem facing many LAN is the rapid dissemination and

transfer of information concerning attacks. Most DIDS can detect a

large-scale attack across the Internet and warn their clients

immediately. However, if multiple network administrators each control

25

their individual subnets, the time required to disperse information to the

individuals who can make the changes is vital.

26

2.7 Biological Epidemiology

The Center for Disease Control (CDC) defines epidemiology as

"the study of the distribution and determinants of health-related states

in specified populations, and the application of this study to control

health problems" [CDC, 2003a]. Depending on the population it affects,

epidemiology can span various fields, such as plant epidemiology,

human epidemiology, and animal epidemiology. Because the general

analytical methods and techniques applied to epidemiology can be the

same across different populations, some methods can span all fields.

Consequently, intense investigations in the field of epidemiology have

attempted to determine the causes of an epidemic and the solution to

its problems. However, since epidemics affecting each species (e.g.

plants, animals, and humans) have different characteristics, different

analytical methods are preferred for each. This present research has

led to a significant understanding of epidemiological models.

Epidemiological models are primarily classified into three

categories: box or compartmental models, continuous space models,

and network models. Box models divide populations into

compartments, and the spread of disease across the compartments is

determined if possible. These models assume that contacts within a

compartment are homogeneously distributed. Box models have been

the standard for dealing with spatial heterogeneity in human

populations [Anderson and May, 1984]. Many of the results from box

models are applicable to human and animal populations.

Continuous space models represent the surface of Earth as a

plane and therefore simplify the mathematical description of space

[Bolker, 1997]. They assist in qualitatively understanding the processes

governing spatial spread. Lattice models have been used with powerful

27

analytical tools to approximate the dynamics of the epidemic in a more

realistic spatial setting. The grid cell structure of lattice nodes has been

successful in using fixed dispersion methods for predicting the spatial

movements of plant epidemics. These dispersion methods depend on

infection vectors such as wind, animals, and spores.

Network models combine the most realistic components of the

continuous-space and the box models. These models have helped

construct approximations of the true contact structure of humans

[Bolker, 1997]. Network models have been very useful in determining

the spatial spread of human epidemics. However, they are also the

most computationally and analytically difficult models to construct.

28

2.8 Computer Epidemic Models

Kephart et al. [1993] used lattice models with directed graphs to

track the spatial spread of early computer viruses. Each computer is

considered as a node in the model. The computer where the infection

started was considered in the center. All connections to each node

were the computers that modeled the human relationship between the

owners of he computers. This type of model was applied to a lattice

structure with three neighbors. This lattice structure resembled a cube,

which formed a grid cell of eight. It is observed that there is clustering

in the center. This formation indicated that the spread is limited to a

circular region around the first incidence of the virus. However, the

viruses under consideration by Kephart et al. [1993] were boot sector

viruses, which spread via human contact structure. The above model is

no longer valid because current viruses use random scanning of IP

addresses to determine the next target. However, the Kephart et al.

[1993] research serves as the starting point and the main inspiration

for the present research.

Related work in the field of computer virus prediction has

concentrated on game theory for predicting the actions of attackers on

individual computers and for predicting when an attack might occur [Liu

and Li, 2001]. Recent research has concentrated on fuzzy logic [Botha

and Solms, 2003] and behavioral assessment to predict attacks.

However, most of these techniques are only practical for determining

attacks on individual computers.

Based on the simple epidemic model [Daley and Gani, 1999]

and the Kermack-McKendrick threshold model [Kermack and

McKendrick, 1932], a two-factor worm model was presented by Zou et

al.. [2002]. The model accurately follows the spread of the 2001 Code

Red worm. The two-factor model helps predict the temporal

29

characteristics of the worm and shows an exponential rise in the

spread of the worm in the early stages when the networks have

relatively normal levels of traffic flow. At this stage, most computers are

not yet infected with the worm. Zou et al. [2003] suggested using a

Kalman filter [Kriedl and Frazier, 2003] on the LAN to detect the

propagation of the worm at an early stage. The filter is based on

observed illegitimate scan traffic. The Kalman filter is an exponential

filter, which increases quarantine strategies as the amount of traffic on

the Internet increases. However, this filter requires the transmission of

status from agents across the network at a time when the network is

heavily loaded with worm packets. If the agents are not able to

communicate, the filter fails.

This chapter has presented the background necessary for

understanding the core concepts discussed later in this thesis.

Discussion continues on the similarities and differences between plant

and computer epidemiology and the choice of the particular statistical

variables and models used in this analysis.

30

3 Computer vs. Biological Epidemics

Epidemic models in earlier work on the spread of a computer virus

concentrated on human epidemics. However, most network worms do not

spread in many ways similar to human epidemic models, primarily due to

the static (immovable) nature of computers as opposed to the

flexible (movable) nature of humans. Infected humans can spread the

virus spatially by their movement to a susceptible population [Anderson

and May, 1985; Morris, 1994].

Another major shortcoming of earlier, worm-oriented, epidemic

models [Staniford et al., 2002; Zou et al., 2002] is that they were not

spatial in nature, i.e., these models did not support the estimation of

spatial flow of a computer worm within the computer network. Plant

epidemic models, however, are inherently spatial because they are used

to develop preventive measures. They have a wide variety of spatial

characteristics and models that can be inherently applied to computer

networks.

This section outlines the primary reasons for using plant

epidemiology in this analysis. Parameters for this research are also

outlines, along with their importance.

31

3.1 Similarities

Staniford et al. [2002] provided a proof of concept for network

worms following the Susceptible-Infected (SI) model for the spread of

biological epidemics. The number of vulnerable hosts infected at time t

follows the equation

)

)

1
TvS(t

TvS(t

e

e
−

−

+
=α

where α is the number of hosts infected at time t, v is the vulnerability

density (number of susceptible computers), S is the scan rate of the

virus, and T is the time when all vulnerable computers become

infected. Zou et al. [2003] further modified this equation to adjust for

the preventive measures taken by administrators after they became

aware of the worm. The above equation gives rise to a characteristic

S-shaped form of the infection incidence as a function of time. Figure 2

(in Section 2.5) depicts the number of computers affected by the Code

Red v2 virus as observed at the Cooperative Association for Internet

Data Analysis (CAIDA) center; it is an S-shaped curve.

Temporal logistic analysis of plant epidemics also produces a

similar equation [Campbell and Madden, 1990].

trLBe
y −+
=
1

1

where y is the disease incidence, t is the time, rL is the apparent

infection rate, and B = (1-y0)/y0 where y0 is the number of plants

infected at the start when t = 0. This equation produces an S shaped

32

curve similar to that seen in the case of the Code Red worm. The time-

series equations indicate that plant and computer epidemics are similar

in their temporal characteristics. The time-series characteristics do not

have an effect on the spatial nature of the infection. However, these

similar characteristics indicate that similar spatial characteristics exist.

Wassenar and Blaser [2002] describe the similarities between

plant and computer epidemics and illustrate how the evolution of virus

strains in computers follows the well-known development patterns of

strains in biological viruses. Their work was inspired by parallels that

scientists drew between the proliferation of computer viruses and the

spread of agricultural catastrophes such as the Dutch Elm disease

[Lemos, 2004]. Virulence genes in plants are constantly “stolen” and

reused, similar to the techniques employed by computer worm

creators.

Plant epidemics reflect the way in which computer virus spread

because plant epidemics also depend upon external factors, such as

wind, rain, and spore dispersal, to spread the epidemic. These factors

have analogous counterparts in computer virus epidemics. Continuous

epidemic models are generally used to model the spread of plant

epidemics. These are generally lattice models where grid cells and

lattice nodes are used for modeling. Due to the basic nature of the

computer network architecture, all the computers in a grid cell, the

nearest neighbor, and the lattice nodes can be easily identified.

Three phases are distinct in plant epidemic spread: liberation,

transport, and deposition. All three phases depend on external

conditions. Wind and rain change the liberation phase, affect transport

through the medium, and randomly distribute the deposition of the

infection vector (Figure 4).

33

Figure 4. Virus transport mechanism in plant epidemics

Just as air is used as the transport mechanism for most

epidemics, so the Internet is used as the transport mechanism for a

majority of viruses in the Internet area. Wind and rain affect the

transport mechanism in plant epidemics by causing changes in the

transport medium, resulting in a random pattern of deposition.

Subsequently, nothing ensures that the infection vector will land on a

susceptible plant or even on a plant at all (the infection vector may land

in a neutral, uninfectable place). In the same manner, the random IP

generation mechanism in computer epidemics generates IP addresses

without any certainty that the end point exists. The virus transfer

mechanism in computer networks is given in Figure 5.

34

Figure 5. Worm transport in computer networks

Another point worth noting here is that both plants and

computers are immobile by their very nature. Therefore, they require

other mechanisms to spread their infection. The infection vector does

not infect plants that are protected against the disease. Similarly, a

virus cannot infect computers that have been patched against

vulnerability in the software.

The stationary nature of computers also allows for easy

characterization of computers into subnets similar to quadrant

structures used in agricultural fields. Table 1 gives similarities between

plant and computer epidemics.

35

Plant Epidemics Computer Epidemics

Virulence genes “stolen” and

reused

New worms reuse old

software code

External environmental factors

influence spread of disease

External computer network

factors influence spread of network

worms

Temporal characteristics of plant
epidemics

trLBe
y −+
=
1

1

y = disease incidence,

t = time,

rL = the apparent infection rate,

B = (1-y0)/y0, and

y0 = number of infecteds at t=0.

Temporal characteristic of
computer epidemics

e
e

TtS

TtS

)(

)(

1
−

−

+
= υ

υ

α

α = fraction of hosts infected
at time t,

v = vulnerability density,

S = scan rate of the virus,
and

T = time when all vulnerable
computers get infected

Table 1. Similarities between plant and computer epidemics

3.2 Differences

Although similarities can be noted between computer and

biological epidemics, some fundamental differences also exist. These

differences can be identified in the transmission medium and in the

availability of a recipient.

The transmission medium used by the infection vector to move

from one host to another in computer networks has physical limitations,

which have often been reached. For example, most computer networks

reached their maximum capacity during the January 2003 Slammer

epidemic. On the other hand, the transmission medium for some

36

biological epidemics, such as air, can only become theoretically

saturated. Thus, insights into how saturation of the transmission

medium affects the spread of the infection vector cannot be

ascertained from biological epidemiology.

In addition, the most important condition for infection in

biological epidemics is that the infection vector reaches a susceptible

plant. For computer epidemics, two extremely important conditions

must be met: the infection vector has to reach the intended recipient

and the susceptible parameter must be present on the host.

Although these differences can change the values of the

parameters in epidemic models, the concept of the two models still

overlap. As noted, this research only analyzed one particular class of

computer viruses, network worms.

37

3.3 Extending Biological Parameters

The next step in this research was to choose which parameters

from plant epidemics would be most helpful in determining the spatial

relation between virus incidences. Since the spatial spread of the

disease is the focus of this research, characteristics are modeled that

help determine a spatial dependence (e.g. spatial autocorrelation and

spatial clustering index). Spatial methods often included in the analysis

of plant epidemics are spatial autocorrelation and the Spatial Analysis

by Distance IndicEs (SADIE) clustering index.

The SADIE clustering index [Perry, 2001] determines the spatial

relation among entities in point-referenced data. Aggregated, patchy,

contagious, clustered, and clumped are descriptors that all refer to

patterns arising from positive or attractive interactions among such

individuals in point-referenced data. Thus, the index determines the

presence of clusters in a field.

Spatial autocorrelation [Cliff and Ord, 1981] measures the

extent to which the occurrence of an event in an areal unit constrains,

or makes more probable, the occurrence of an event in a neighboring

areal unit. In simple terms, spatial autocorrelation is based on the first

law of geography [Tobler, 1970]: near objects are more similar than

objects that are more distant.

Application of spatial autocorrelation to local area networks

identifies the relation between two class C networks (a class C network

is one in which the first 16 bits of the 32 bit IP address is fixed [for

example, 128.173.xxx.xxx]) that receive the same intrusion or receive

the same virus. Spatial autocorrelation can be quantified by various

methods. This research computes spatial autocorrelation by plotting

38

the worldwide metrics, Moran’s I values, for spatial autocorrelation

[Moran, 1948].

An important consideration in spatial autocorrelation is its high

dependence on the size of the area designated as a group. Unless the

correct group size is chosen, spatial autocorrelation may not be

evident. Since a natural topological divide exists in computer networks,

each class C network can be designated as a quadrant.

Thus, two different aspects of the network, topology and

geography, are used as the main underlying principles for observing

autocorrelation in the incidences of network worms in a subnet. The

entire class B (class B network is one in which the first 8 bits of the 32

bit IP address is fixed, for example, 128.xxx.xxx.xxx) network

(analogous to a field in plant epidemiology) can be construed as a 16 x

16 grid structure with serial ordering of the class C networks. Instead of

the serial ordering, neighbors are identified by their geographical

proximities in the geography-based analysis. Similarly, neighbors are

identified by distance with respect to network distances (hop counts) in

the topology-based analysis.

Each subnet within the LAN can be denoted as one lattice node

that is arranged on a lattice model with 254 possible neighbors (since a

class B network can contain a maximum of 255). However, the

meaning of the word "neighbor" can be further expanded to include

and indicate exactly which lattice nodes are close to each other. Two

re-definitions are currently under consideration: neighbors can be

determined by a geographical measure or by a measure based on

topological structure.

Since neighbors are close to each other, the distance between

topological neighbors can be determined from the network hop count

39

and the geographical distance based on the physical distances

between the buildings in which the subnets are located. The next

subnet need not be the neighbor of a lattice node; in fact, the

neighboring node may be geographically and topologically distant.

40

4 Evaluation Parameter

Spatial autocorrelation is the evaluation parameter used in this

research. Different methods are available for calculating spatial

autocorrelation. Certain factors must be considered, and some extensions

must be made. Neighborhood relations are defined next and how the

definitions of neighborhood are extended to fit computer networks.

41

4.1 Spatial Autocorrelation

Spatial autocorrelation is defined here as the relationship

among values of a single incidence (in this research, the number of

infections) that comes from the arrangement of the areas in which

these values occur. It measures the similarity of objects within an area,

i.e., the degree to which a spatial phenomenon is correlated to itself in

space [Cliff and Ord, 1981]. In addition, spatial autocorrelation

determines the level of interdependence between the values of the

variables, and the nature and strength of the interdependence.

In the context of plant epidemiology, spatial autocorrelation tests

whether the extent of infection in a particular location depends on the

existence of the infection in its neighbors. In plant epidemiology, spatial

autocorrelation answers one simple question: is a particular location

developing a plant epidemic because its neighbors have the same

infection? Extending the same logic to computer epidemiology, the

question becomes: is the incidence of a network worm in a particular

location dependent on its neighbors being infected with the same

worm?

Spatial autocorrelation is an assessment of the correlation of a

variable (in this research, extent of infection) with reference to its

location, i.e., where it occurs in the space of the current consideration.

Spatial autocorrelation assesses whether the values in a given space

are interrelated and, if so, determines if there is a spatial pattern to the

correlation, i.e. does spatial autocorrelation exist.

Spatial autocorrelation can be positive or negative. No spatial

autocorrelation is exhibited when the neighbors of a grid square under

consideration have different properties from those of the grid square

42

itself. A checker board (such as one shown in Figure 6) is a good

example of the absence of spatial autocorrelation. Black squares

indicate the presence of an infection while the white squares indicate

the absence of infection. The squares adjacent to each white square

are black, indicating that the nearest neighbors are not similar. Under

these conditions, only the adjacent cells that have a common side as

neighbors are considered. Such a neighborhood definition is called the

rook’s spatial contiguity definition.

Figure 6. No spatial autocorrelation

The highest spatial autocorrelation exists when all squares have

the same property. In Figure 7, the color black represents all grid

squares. This example represents the maximum spatial autocorrelation

possible.

Figure 7. Highest value of spatial autocorrelation

43

4.2 Measuring Spatial Autocorrelation

Spatial autocorrelation can be computed by using some index of

covariance for a series of distances (or distance classes) from each

point. The resulting correlogram (correlation diagram) illustrates

autocorrelation at each lag distance. Membership in a given distance

class is defined by assigning a weight to each pair of points in the

analysis; typically this weight is a simple indicator function, taking on a

value of 1 if within the distance class and all else 0 (weights may also

be defined in other ways, in which case they can take on real values).

The weighting matrix for the geographical and the topological cases in

this research is defined separately, and is dealt with in greater detail in

Section 5.4.

Spatial autocorrelation exists when a systematic spatial

variation occurs in the values of a given variable. This variation can

exist in two forms, positive or negative spatial autocorrelation. In the

positive case, the value of a variable at a given location tends to be

similar to the values of that variable in nearby locations. If the value of

some variable is low in a given location, the presence of spatial

autocorrelation indicates that nearby values are also low. Conversely,

negative spatial autocorrelation is characterized by dissimilar values in

nearby locations. For example, a low incidence value may be

surrounded by high values in nearby locations when negative spatial

autocorrelation exists.

In this research, a high spatial autocorrelation value indicates

that if an individual entity showing the existence of infection will have

neighbors with similar values. The implication is that if the neighbors

are not currently infected have a high likelihood of showing infection in

the future. The value of spatial autocorrelation can be used to predict

the likelihood of the infection spreading to neighbors of the entity itself.

44

The spatial pattern of a distribution is defined by the

arrangement of individual entities in space and the relationships

among them. The capability of evaluating spatial patterns is also a

prerequisite to understanding the complicated processes underlying

the distribution of a phenomenon. As such, statistics of spatial

autocorrelation provide a useful indicator of these spatial patterns.

There are many indicators of spatial autocorrelation [Cliff and

Ord, 1981;Chou, 1997;Goodchild, 1987;Haining 1990]:

1. Global indicators of spatial association, join count statistics;

Moran's I [Moran, 1948] and Geary's c [Geary, 1954]

2. Local indicators of spatial association—LISA Gi [Anselin, 1995]

and Gi* statistics [Ord and Getis, 1995]

3. The variogram approach to spatial association [Matheron, 1963]

for geostatistical perspective

In this study, spatial autocorrelation calculations used the global

Moran's I [Moran, 1948] methods. These statistics indicate the degree

of spatial association as reflected in the data set as a whole. This

research was primarily interested in an estimate of the autocorrelation

over the entire space under consideration. Moran’s I computations

gave values between -1 and +1; -1 is the maximum negative spatial

autocorrelation detected and +1 the maximum positive spatial

autocorrelation.

In plant epidemiology, Moran's I is the most commonly used

coefficient in univariate autocorrelation analyses [Diniz-Filio and Telles,

2002]. Also, Moran’s I allows geographic distances to be partitioned

into discrete classes. In computer networks, most computers and

subnets lie in discrete subnetworks. This method better supports

45

analysis of spatial autocorrelation. The common use of Moran's I in

plant epidemiology also influenced its choice in this research.

46

4.3 Calculating Spatial Autocorrelation

To obtain the spatial autocorrelation coefficient of a variable, the

values of that variable must be correlated for pairs of localities.

However, only those pairs of localities that are considered neighbors

were correlated. These neighbors are designated as the weighting

matrix. Each row of the matrix represents the neighborhood relation of

the spatial place under consideration to the other grid spaces. For

example, in the sample grid in Figure 8a, the corresponding row in the

neighborhood matrix for grid-square 5 (considering queen’s

neighborhood definition) is shown in Figure 8b. Queen’s neighborhood

definition includes grid spaces that share a vertex or a side with the

grid under consideration.

0 1 2

3 4 5

6 7 8

Figure 8a. Grid space layout

0 1 2 3 4 5 6 7 8

5 0 1 1 0 1 0 0 1 1

Figure 8b. Weight matrix for grid-square 5 considering grid space in 8a

A very simple weighting scheme is used in the above example.

Every neighbor who has either a side or a vertex in common with the

grid square under consideration (5) is assigned a weight of 1; all others

are assigned a weight of 0.

47

The weighting matrix is adaptable so that it reflects the situation

under consideration. The weighting scheme used in the research for

the two evaluation cases, geographical and topological, are explained

in Section 5.4.

Moran’s I is the weighted product correlation coefficient

dependent upon the weights assigned which depict proximity. Moran’s

I coefficient is calculated as

∑

∑ ∑

=

=

≠

== N

i

io

N

i

ijN

j

jiij

ZS

ZZWN

I

1

1

,

1

2

where N equals the number of regions, wij is a weight denoting the

strength of the connection between areas i and j, zi is the rate in region

i centered about the mean rate (using zi = xi – ave (x); xi is the rate in

region i); and S0 is the sum of the weights.

S0 is represented as

∑∑
= =

≠=
N

i

N

j

ij jiWS
1 1

0 ,

where Wij is a weight denoting the strength of the connection between

areas i and j.

 The null hypothesis for the Moran’s I calculation assumes that

the area under consideration is not correlated. The expected value of I

under the null hypothesis is

48

()
()1
1
−
−

=
N

IE

where N is the number of sample values being considered.

The significance (p) of the I value calculated is determined by

an asymptotic, normal bell shaped curve. The shape of the curve is

determined by the value of variance. Variance is calculated as

where

49

4.4 Neighborhood

The concept of neighborhood is crucial to the determination of

spatial autocorrelation. The choice of the type of neighborhood

depends on the relationship under examination. In this research, the

focus is on the spatial relation between network worm incidents in a

geographically close LAN. Neighborhood relations are determined for

the geographical and topological cases.

50

4.4.1 Geographical

In traditional plant epidemiology, when grid spaces are under

consideration, movements of different pieces of the game of chess are

used to define neighborhood characteristics. Figure 9 shows the

different kinds of neighborhoods that exist at the first spatial lag for the

center square. The black squares indicate neighbors. Therefore,

Figure 10a displays the rooks neighborhood; Figure 10b shows the

bishop neighborhood; Figure 10c shows the queens neighborhood.

a b c

Figure 9. Neighborhood definitions a) rook neighborhood, b) bishop
neighborhood, and c) queens neighborhood

The same movements can be used to explain the neighborhoods at

several distances. Figure 10 shows the rooks neighborhood at spatial

lag 2 for the center square.

Figure 10. Rooks neighborhood with
spatial lag 2

51

A 1:50 scale map of Virginia Tech was divided into an 18 x 18

grid structure. A 1:100 scaled map of Virginia Tech without the grid

partitions is shown in Figure 11. A fragmented 1:50 scaled map of

Virginia Tech can be obtained from the Virginia Tech Architects

website at (http://www.unirel.vt.edu). The grid spaces were

approximated via an overlaid standard 8 x 8 graphing sheet. Two

squares on the sheet were joined such that each grid square

eventually was a 16cm x 16cm square on the sheet. Each grid square

contained approximately one bui ld ing on campus.

Figure 11. 1:100 scaled map of Virginia Tech

To maximize the analysis of influence but still maintain a

statistically computable number of combinations, the queens

neighborhood structure with only a first order spatial lag only was

considered for our analysis.

52

In addition, certain neighbors might not exist at all spatially

within this neighborhood structure. Absence of computers in a certain

portion of the grid, such as a lake or building with no computers

(greenhouses) resulted in the reduction of the weight of the non-

existent neighbor to 0. Non-existent neighbors would not have any

effect on the number of infections within another grid square. In

addition, the effect one neighbor can have on another neighbor does

not increase when a neighbor is unable to affect the infections.

Therefore, their weight was maintained at a constant 1 value.

Consequently, a first order neighbor if it had computers was

assigned a weight of 1, otherwise it was assigned a weight of 0. This

process was repeated for each grid square, thus producing the weight

matrix for the geographical case.

53

4.4.2 Topological

The topological case is quite different and more complicated

than the geographical case. No natural divide is evident for recognizing

if a computer is a neighbor of another computer and for assessing how

much consideration should be given to this problem.

At the highest level, a computer topological network has the

structure of a tree (Figure 12).

 Figure 12. Tree hierarchies of computer networks

Figure 12 indicates that not every computer has neighbors at its

level. This research only considered the class C level domain, so the

task is somewhat simpler. However, the issue of levels and

neighborhoods remains an equally complex problem as the subnet

structure in Figure 13 shows.

Core router

Subnet router Subnet router Subnet router

Computer A Computer B Computer C Computer D

54

Figure 13. Subnet structure under a core router

Once the number of subnets begins increasing dramatically,

redundancy is introduced into network paths. This redundancy helps

networks stay active, even if one particular route is full or one section

of the network is down.

Redundancy in network topological structures can be modified

by various means. An example of a redundant structure is the star

network topology shown in Figure 14. This structure produces multiple

ways to communicate from one subnet to another. However, in

practice, computer network architects use a combination of different

topologies that they have developed from their intimate knowledge of

the network.

Core router

Subnet Router Secondary subnet
router

Subnet router

Primary subnet
router

Primary subnet
router

Primary subnet
router

55

Figure 14. Star network topology for subnets A, B, C, and D

The weight of the edge between two subnets is determined by

the probability of an infection from a computer in one of the subnets

under consideration following a network topological route to a

computer in the other subnet under consideration. The neighborhood

weight, therefore, primarily depends on the subnet connections of the

network topology. Figure 15 demonstrates the calculations of

neighborhood weight.

Figure 15. Example subnet structure

The probability that subnet 4 will choose subnet 5 over all its

neighbors is 1/7. This calculation comes from the seven different paths

C D

B

 A

Core
Router

Subnet 1 Subnet 2 Subnet 3 Subnet 4 Subnet 5 Router

Subnet
6

Subnet
7

Subnet
8

Subnet
9

Subnet
10

56

that the infection can take on an outward bound path from subnet 4.

Therefore in the weight matrix row for subnet 4, the weight for subnet 5

is set as 1/7. However, if a subnet is not in the same child of the same

parent, then end-to-end probabilities are used. To determine the

weight of the neighborhood between subnet 4 and subnet 9

(Figure 16), the probabilities of direct neighbors from 4 to the parent of

9 is 1/7. The probability that the choice at this point will be subnet 9 is

1/4. Therefore, the total probability is 1/7 x 1/4 = 1/28. Finally, all the

weights for the subnet are normalized so that the weight of each

individual subnet is normalized to 1. In effect, all the probabilities are

summed up and then each probability is divided by the sum of all

probabilities to produce the weight.

Such a strategy leads to an exponential weighting scheme as

the distance changes. To simplify the weighting scheme, only subnets

under one core router are considered to be neighbors. The actual

topological structure beyond the core routers is abundant with

redundancies. Also, the probability values become extremely small

(<0.0001) as the neighborhood definition stretches beyond the core

router. This decrease in probability values is due to the large number

of subnets that are encountered at every stage in the topography. In

this research, neighborhood was defined as every subnet being

considered a neighbor of the other as long as each subnet lies under

the same core router within Virginia Tech’s LAN.

This topological weighting scheme categorizes numerous

subnets as a neighbor of one subnet, albeit at different levels. This

weighting scheme is in stark contrast to the weighting scheme used for

the geographical case. However, this weighting scheme better reflects

the relationship between two subnets under the same core router.

57

5 Data Analysis

Already discussed are the choice of spatial autocorrelation and the

different ways to calculate it. In the following section, discussion concerns

the methodology behind the data collection, analytic methods, and the

tools including their development, implementation and testing. Finally, the

results are outlined and their significance is discussed.

58

5.1 Tools

Three distinct categories of tools were used for data analysis:

• Data storage tools— used for data storage and processing

• Analytic tools— used for calculation of input required for spatial

autocorrelation, and

• Statistical tools— enables the actual spatial autocorrelation

calculations

59

5.1.1 Data Storage Tools

A large data collection effort requires a substantial database for

storing and querying the data. MySQL [2001] was chosen as the

database for two primary reasons:

(1) MySQL is a stable database with strong reliability and

performance characteristics,

(2) Dshield, the data provider, uses MySQL to maintain its records

The 4.0.14 version of MySQL was implemented on Linux i386

systems with a 2.4 kernel. This database primarily held all the data that

was harvested from the Dshield database.

A day’s record from the Dshield database consists of

approximately 20 to 30 million individual firewall log entries. Records

are stored in a MySQL database. A series of SQL command such as

one in Figure 16 are used to collect pertinent information about the

source address, target address, target port, date, and the time at which

the intrusion was attempted. One such SQL command is shown below

Figure 16. Sample SQL Query

Information collected in the above manner is stored in another

table in the MySQL database. Other analytic tools use the data stored

by the above methods for calculations of spatial autocorrelation.

Mysql> Select source, sourceport, target, targetport, date, time from
reports_731805 where (source like ‘128.173.%’ and targetport =
‘1434’);

60

5.1.2 Analysis Tools

Calculation of spatial autocorrelation requires two primary sets

of values: the actual number of incidences in each grid or subnet and

the neighborhood relationship between the individual grids or subnets.

The analytic tools are used in calculations of these sets of values.

The neighborhood relationship between the entity spaces is

stored in a 2-dimensional matrix. However, the number of incidences in

each entity space is stored as a list in a file.

5.1.2.1 Neighbor Matrix Development Tool

In order to obtain statistical values for spatial autocorrelation, a

matrix that details the relationship of the neighborhood is required. A

tool was developed using gcc 3.1 and tested on Open BSD using

Darwin. This tool interacts with a MySQL database using MySQL’s C

Application Protocol Interface (API). The database stores information

on the location of an entity space with regards to the entire space. The

basic output of this part of the program is a text file containing the

relationships in matrix form.

The program must first be compiled to form an executable. The

tool can be executed from the Unix command line by supplying two

arguments after the executable name. The first argument indicates the

kind of analysis to be performed, geographical (geo) or topological

(topo). The second argument is the name of a file containing the grid

spaces without a computer in them. An example of a grid space with

no computers is a pond or simply a building like a greenhouse. The file

supplied in the second argument speeds up the process by skipping

computations for the grid spaces in the file. This file is especially

helpful if there is large grid space or a large topological network.

61

Output can be redirected to a file from the command line. The source

code for the tool is presented in Appendix A.

The algorithm for calculating the neighborhood matrix differs for

the geographical and topological cases. Calculations for each of these

cases are detailed below.

5.1.2.1.1 Geographical Case

The neighborhood structure assumes all neighbors of the

grid square (considering queens neighborhood) to have a value of

1, except if the grid square is one of the exceptions noted above.

Grid squares without a 1 have no influence on the possibility of

contracting a virus. The names of those grid squares are stored in

the file that is supplied as the second argument during the

execution of the tool. If an empty file were provided as the second

argument during the execution of the tool, the conclusion is that no

grid space is empty. An example of running this case from the

command line is shown below.

Shell>./executable_name geo file_with_nonexistent_grids.txt

5.1.2.1.2 Topological Case

The program internally constructs a tree structure of the

neighborhood based upon the location information provided in the

MySQL database. After forming the tree structure, the

neighborhood weight matrix is calculated using the principles

outlined in Section 4.4.2. The weight calculations are based on a

probabilistic measure of the topographical path followed by an

infection from one subnet under consideration to another. These

calculations are only performed if both the subnets under

consideration exist below the same core router.

62

In the topological case, the command line execution is

similar to the one in the geographical case. An example of running

the executable from the command line is shown below.

Shell>./executable_name topo file_with_nonexistent_subnets.txt

The second argument provided while executing the program

code is a file containing all non-existent subnets. This file can be an

empty file. However, a file containing the unavailable subnets can

help reduce the run-time of the program. Typically, run-time for the

topological case is longer than that for the geographical case. Run-

times were consistently recorded around the 20-second time range

on a Power PC 800 system with 256 MB of RAM.

5.1.2.2 Incident Aggregation Tool

The incident aggregation tool determines the number of

infections in each geographical grid space or topological subnet. The

infection values are necessary for determining spatial autocorrelation.

This tool aggregates log records of incidents that are stored in

the MySQL database tables by the SQL queries of the data storage

tools. If a geographical analysis of the number of incidents is to be

performed, the ip2vtgrid.php script is used. On the other hand, the

ip2vttopo.php script is used for a topological analysis.

The output of the tool is a list containing an entity space with the

corresponding number of incidents on each separate line. In this

analysis, the entity space was a grid square for the geographical space

and a subnet for the topological case.

63

The incident aggregation tool was developed in PHP (see

Appendix B). This tool has been tested on a X86 machine running

Linux with 2.4 kernel and PHP 4.2. The tool for the geographical case

can be run from the command line as

Shell> php ip2vtgrid.php

For the topological case, the tool can be run from the command

line as

Shell> php ip2vttopo.php

The output can also be redirected to a file from the command

line.

5.1.3 Statistical tools

The final group of tools uses a statistical program SAS for the

actual calculation of spatial autocorrelation. This research used SAS

8.02 running on a Windows XP platform.

Any statistical package that has the capability of calculating

spatial autocorrelation could be used for this purpose. The choice of

SAS was simply based on resources available as part of the Virginia

Tech community.

Spatial autocorrelation is calculated using SAS macros that are

programmed to use the neighborhood weight matrix and the incident

list as input. The output of the SAS macro is the value of Moran’s I

spatial autocorrelation with its associated p-values. The p-values

indicate the level of confidence in the Moran’s I value obtained.

64

The SAS macros for the geographical and topological

calculations of Moran’s I are provided in Appendices C.1 and C.2,

respectively.

65

5.2 Data Collection

Data was collected at the SANS Internet Storm Center. Data

collection was facilitated by Johannes Ullrich at the SANS Internet

Storm Center. The Internet Storm Center backs up data occasionally

and stores information for interesting periods of worm activity. For this

research, data was extracted for the Linux Slapper, SQL Slammer, and

MS Blaster network worms (Table 2).

Start Date End Date

Linux Slapper 09/15/2002 09/30/2002

SQL Slammer 01/22/2003 02/10/2003

MS Blaster 08/15/2003 08/31/2003

Table 2. Time periods for data collection

Traffic patterns that match these worms can still be found

occasionally on the Internet. However, the main phase of any infection

is during the early hours of the worm spread. This main phase is

illustrated by the exponential rise of the total number of computers

infected by the worms (Figure 2 [on page 20]).

The Dshield database collects logs and processes them on an

hourly basis. Participants may choose to submit logs, at weekly, daily,

or even hourly intervals. To collect as many logs as possible for the

relevant periods, log data must be collected for at least 15 days after a

worm starts spreading.

Since people from all over the world submit these logs, the

existence of an infected computer on Virginia Tech’s network can be

66

determined by two conditions. The first condition is that an infected

computer from the Virginia Tech network has to attempt an infection to

a computer having a firewall with logging capabilities. The second

condition is that the person owning the machine has to submit the

firewall logs to Dshield.

Network worms tend to infect computers by selecting random IP

addresses and attempting to infect them across the Internet. The

spread of a successful worm has to be rapid or network administrators

will set up blocks at the perimeter. The rapid spread attempt also

ensures that as many computers as possible will be infected in the

shortest time possible. For example, the SQL Slammer worm of

January 2003 spread across the Internet in approximately 30 minutes.

This rapidity results in the worm scanning several IP addresses in a

short time. Since these IP addresses are randomly generated, the

worm has equal probability of infecting a computer next to it and one

across the world. An infected computer will, thus, have attempted to

infect computers all over the world with equal probability.

Approximately 200 million records are added to the Dshield

database each week. The possibility is high that an individual who

sends a log will have recorded an intrusion attempt. Although this

procedure is not the most foolproof method of detecting all infected

computers, most of them can be detected in this way.

This research is centered on three major network worms that

used a random IP generator to spread from one computer to the next.

The time periods for the spread of the worms are detailed in Table 2.

Moore and Shannon [2001] and Zou et al. [2003] have shown that the

time series spread of a worm follows an exponentially increasing

curve. The network worm spreads to almost all susceptible computers

in the first 2 days after the worm is released. Consequently, analyzing

67

the data from 15 days will provide all the computers affected by the

virus.

This section has outlined data collection methods. However, the

best method for collecting data for a LAN is by deploying an IP packet-

sniffing engine on the core router that links the LAN to the Internet.

Unfortunately, such data are often not stored and, hence, are

unavailable. Dshield or a similar log collection source can be an

important resource in this respect.

68

5.3 Data Analysis

The sample data collected from the sources mentioned above

were analyzed to form a simple list of values using the analytic tools

described in Section 5.1. This list contained the number of incidences

of the virus in each area under consideration. Only the grid areas in

which an infection was possible (i.e. computers were available) were

considered. This eliminated all areas such as parking lots and lakes

from the data in the geographical case. In the topological case,

subnets that did not exist on the network were eliminated from the list.

The incidents in an area were standardized to ensure the

principle of statistical stationarity. In simple terms, we were simply

ensuring that an entity space did not have a higher number of

occurrences simply because it had a higher number of computers. The

incident aggregation analytic tools in Section 5.2.1.2 produced a list

that indicated the percentage of computers in a location that were

infected by the virus. This crucial step was necessary to fulfill the

statistical stationarity principle.

The analytic tools also produced the weighting matrices

described in Section 4.3. This weighting matrix and the data obtained

in the earlier step were used as input to the SAS program. The SAS

Moran’s I macro calculated the spatial autocorrelation (I) and

significance values (p) for the virus data provided.

The Moran’s I value indicated the extent of spatial

autocorrelation. The significance of the spatial autocorrelation was

indicated by the p-values produced by the macro. A value below 0.05

was considered fairly significant and acceptable in this research.

69

Finally an agreement test was conducted between the three

virus incidences to determine if the spread was in agreement. This

agreement test verified that the spatial autocorrelation (I) values were

not occurring by chance. Since the starting points of all three

epidemics within the Virginia Tech network were different, the

agreement test verified that the spatial autocorrelation value remained

the same regardless of where the epidemic started within a LAN. In

real-world examples, these values may not be exactly the same.

However, the agreement test verifies if the values are similar.

The expected value of I [Cliff and Ord, 1981] is given as

()
()1
1
−
−

=
N

IE

where N is the number of locations under consideration.

In the geographic case, the worm could possibly have infected

108 grid squares. Therefore, E(I) = - 0.0094. Similarly, in the

topological case, the worm could have infected 146 subnets.

Therefore, E(I) = -0.0069.

70

5.4 Results

The results are given here in tabular format for easier

interpretation.

Topological case

Number of subnets = 146
E(I) = -0.0069

Worm under
analysis

Moran’s I
value

p-value Variance Starting
point (Class
C subnet)

MS Blaster -0.0194 0.9530 0.0000561 37
SQL Slammer 0.0093 <0.0001 0.0000038 105
Linux Slapper 0.0671 <0.0001 0.0000006 149

Table 3. Spatial autocorrelation results for the topological case

Geographical case

Number of grids = 108

E(I) = -0.0094

Worm under

analysis

Moran’s I

value

p-value Variance Starting

point (grid

square)

MS Blaster 0.1120 <0.0001 0.0001931 P8

SQL Slammer 0.1449 <0.0001 0.0000025 D15

Linux Slapper 0.0329 <0.0001 0.0000006 H14

Table 4. Spatial autocorrelation results for the geographical case

As shown, the p-value of the Blaster worm under topological

analysis is very high. This p-value of the Blaster worm indicates that it

spreads independently of space. Therefore, the Blaster worm was not

71

compared to the other two in the topological case. The remaining

results of the agreement test are shown below.

Topological case

Comparisons p-value

Worm Worm

Slammer Slapper 0.6547

Table 5. Agreement test for topological case

Geographical case

Comparisons p-value

Worm Worm

Blaster Slammer 0.0578

Blaster Slapper 0.0009

Slammer Slapper 0.0253

Table 6. Agreement test for the geographical case

72

5.5 Analysis of Results

Analysis of the results obtained from the data analysis is

explained in this section. The two cases are analyzed separately.

5.5.1 Topological

The p-values are high for the Blaster worm (Table 3). Thus, the

topographical case does not show an autocorrelation between the

incidents of the Blaster epidemic in the LAN. The corresponding p-

values for the Slammer (<0.001) and Slapper (<0.001) worms indicate

that spatial autocorrelation exists. Therefore, a spatial dependency

exists in the spread of the Slammer and Slapper worms within the

network topography of the Virginia Tech LAN.

The agreement test was used to determine if the spatial

autocorrelation values of the two worms under examination were

related. In effect, the test determines if the worms spread in a similar

way. The agreement test is only conducted if the worm itself spread in

a spatially dependent way.

In the topological case, an agreement test was performed

between Slammer and Slapper results. The null hypothesis of an

agreement test is that the values are not in agreement. In this research

the null hypothesis is that the spatial spreads were not similar. A high

p-value indicates that the null hypothesis is true.

The p-value in Table 5 is 0.654. Such a high p- value indicates

that the null hypothesis is true. This means that the spatial spreads of

Slammer and Slapper worms in the topological case are not the same.

73

5.5.2 Geographical

The p-value is low (~< 0.05) for each of the virus cases (Table

4). Each virus case displayed positive spatial autocorrelation, that is,

neighboring grid spaces had similar values. This finding indicates that

the spread of the virus was spatially dependent in all three cases.

An agreement test was then conducted between the spatial

autocorrelation values. The null hypothesis for the agreement test is

that the values were not in agreement. A high p-value (>0.1) indicates

that the agreement test hypothesis is correct. The p-values of the

agreement test are low (Table 6). Therefore, the null hypothesis was

rejected. Hence an agreement existed between the spatial

autocorrelation values. Therefore, the spread patterns of the three

viruses in geographical space were the same.

74

6 MIDS

In order to leverage the results of this spatial autocorrelation

research, the design of an IDS called the Middle-range Intrusion Detection

System (MIDS) is outlined. An important point to note is that such a

system requires earlier occurrences of similar network worm events to

determine the spatial autocorrelation present. Therefore, the first step

involves implementing a DIDS on the network.

In the first stage, a DIDS was obtained from the SANS Internet

Storm Center. Changes were made to the software so it would work on

lower end capability systems. System requirements were gathered and

the software was implemented on the Virginia Tech network. System

administrators were asked to send firewall logs to Virginia Tech’s DIDS

[Marchany, 2003] A visualization component displayed attacks that were

recorded on systems across campus. Figure 17 shows the visual

component of the current system. A map of campus is displayed, along

with the locations of the vulnerabilities occurring across campus. A legend

on the left side of the figure shows attacks that are occurring. Such a

component helps system administrators identify trends in attack patterns

on the internal network so that they can modify their firewall or IDS rules.

During this period, records of worm activity are captured and stored for

analysis. This strategy gathers information on the subnets under attack

and the number of computers that were infected.

75

Figure 17. Virginia Tech local Dshield user interface

76

6.1 Design

Earlier discussion showed how the value of spatial

autocorrelation can be used to help predict the spread of a network

worm. The design of the system is outlined in this section.

During development, efforts were focused on keeping the product

simple, minimalist and easy to implement. The MIDS architecture

reflects this philosophy. The MIDS architecture design is similar to the

D-shield DIDS architecture primarily because of implementation and

cross-functionality reasons. The architecture (Figure 18) consists

primarily of five components

 Agents

 Data aggregator

 Analyzer

 Spatial flow analyzer and predictor, and a

 Notification Component

Each of these components and their functionality has been

explained below.

77

78

6.1.1 Agents

Agents are the primary and secondary data sources that provide

information to the MIDS. Primary data sources are individual firewall

logs, host-based IDS logs such as BlackIce or a packet analyzer such

as Zone Alarm. Secondary data sources are network-based IDS such

as Snort or router logs. Both of these sources can provide their logs to

the MIDS.

Agents simply download clients that submit logs to the system

and can be programmed to send its logs regularly to our system. This

task can be achieved, for example, by classifying it as a cron job on

Unix based systems. Several clients are available for different types of

firewalls and IDS.

As MIDS is currently being developed for a Class A or Class B

network level, the main agents are personal firewalls, perimeter

firewalls and subnet IDS. The end user may sanitize data to protect

privacy. No additional data scrubbing is done in the MIDS. However,

care is taken not to expose end user reports as these can give an

indication of the configurations of the end-user firewall and IDS

systems.

Care is taken at the data aggregator level to delete duplicate

records so that duplication does not affect our analyses. Duplicate

records are identified by multiple fields (source, destination, timestamp,

etc.) before they are deleted. A notice is sent to the user that the

record has been formatted and added to the database. In case of

problems, notices are also sent so that these can be solved in the

future.

Agents are often deployed at multiple levels because packet

dropping may be enabled at different levels in the network hierarchy.

79

The decision to drop the packet versus simply logging it is made in the

context of the risk of the intrusion and the possibility of the service

existing at a lower level in the network hierarchy.

80

6.1.2 Data aggregator

The data aggregator component is a combination of a MySQL

database and PERL/PHP scripts. Agents send their data in text file

format to the MIDS. These files are stored in a folder on the server for

a time period specified in the configuration files. The data aggregator

runs periodically, depending on the system resources available and the

need for immediate updates.

On the current system, data aggregation after 8 hours is a

reasonable period of time before an update begins. However, this time

balance was identified after a substantial trial-and-error process.

System administrators will need to adjust this time period based on the

number of submissions and system resources available. Typically, for

a system with submission logs from a Class B network, 4 hours are

needed to run the updates if the updates are run after 8 hours.

However, if the updates are run hourly, they tend to overlap in

processing times.

The scripts contained in the data aggregator module have error

checking, bounding, and formatting mechanisms to convert the raw

files to database storage files. Checks are also performed at this stage

for any duplicate records. This check is important to maintain the

validity of the results. Information is examined for removal of any

indication of the identity of the original submitter, and a notice is sent to

the submitter of the action taken.

The data aggregator also controls the database mechanism and

is the only module that is allowed to make changes to the database.

Hence, appropriate security considerations should be put in place.

These security precautions are necessary to maintain the privacy of

81

the submitters. Log records can indicate the configuration of firewalls

or routers on the network of the submitters. This lapse in security could

potentially lead to the attackers circumventing the security measures in

place on the network of the submitters. A packet sniffer on the network

containing the data aggregator can flag any suspicious packets and

generate a note to the system administrators. In addition, care is taken

to assure that none of these services are available from the Internet.

The data aggregator modules, the database itself and the log

storage directories are on the same physical machines. This

architecture is used to speed up the aggregation process. If a high

data network bandwidth is available, the log storage directories can be

separated from the rest of the aggregator. Such architecture can help

increase security of the database, but negatively impacts performance

(as mentioned earlier).

The size of the database has to be constantly monitored. A

noisy worm can cause high amounts of logs to be submitted and, thus,

consume disk space. While disk space is not a terribly costly entity,

choices regarding the amount of space that may be used should be

made before system deployment. The data aggregator stores logs for

60 days. Extending this functionality, however, will not be a major

development challenge.

Also, special scripts have been developed for storing data for

important events, such as a new virus. In particular, such data is stored

separately and for longer periods of time. Such utility scripts and

databases assist us in determining of spatial autocorrelation, which will

be valuable in the ultimate usability of the system.

82

6.1.3 Analyzer

As explained earlier, most software was derived from the DIDS

obtained from Dshield. Therefore, the architecture bears a

resemblance to the Dshield DIDS architecture. The analyzer

component is analogous to the central analysis server of Dshield.

Modifications have been made to several components to improve

stability and optimize the system in a smaller network architecture.

One of the major components added to the analyzer is the alert

mechanism. Either the local analyzer or a global DIDS mechanism can

trigger this alert mechanism. In this way, both local and global

emergencies can be captured.

Future ideas include a structure with three separate alert levels.

The lowest alert level would be one where the local analyzer detects a

series of anomalies in the internal network and indicates this detection

as an emergency to the spatial predictor. A second level of alert would

be one where the locally detected anomaly is passed to the spatial

predictor; the global DIDS indicates the presence of the same kind of

traffic after a reasonable amount of time. The highest level of alert

would be triggered when the local analyzer has yet to detect an

anomaly, but the global DIDS indicates the presence of a global

intrusion. This alert would mean that data is insufficient for the local

analyzer to detect a problem with the network, but a global scale

warning is occurring (Figure 18).

83

Figure 19. Threat level determination

If the spatial prediction mechanism can predict the path that

computer viruses will follow at this stage, network and system

administrators can be warned immediately.

The three levels of warning can also dictate the resources that

must be allocated to the intrusion analysis process. This logic must be

embedded in the analyzer component. Although a very simple

gradation of levels of severity is presented here, this scheme has

potential to develop into a massive, artificial intelligence problem,

which this researcher would like to avoid—at least for now.

Internal network
problems

External network
problems (DIDS)

Only internal network

Both internal/external
network problems

External network
detected; nothing yet
on internal network

84

6.1.4 Spatial analyzer/predictor

The spatial analyzer/predictor module is the core motivation and

the major advantage of MIDS over DIDS. Two components make up

this module, the spatial analysis component and the spatial prediction

component. These two components have been separated in the

architecture diagram since they are separate parts of the system.

However, one single thread links both parts, i.e., spatial analysis.

The spatial analysis component examines the data stored in the

data aggregator for different events. All current data are evaluated to

determine if the trend of an intrusion has an epidemic/pandemic

quality. Such a trend is indicated by a sudden surge in the number of

events recorded for a particular port or activity similar to the one shown

in Figure 1. If such a sudden surge is observed, the MIDS internally

classifies this event as an epidemic.

An attempt is then initiated to find a relation between virus

incidence and the geography/topology of the LAN. Previously

calculated spatial autocorrelation values will help detect the probability

of neighbors receiving a worm. At this stage, the subnets where the

epidemic exists have been identified.

Knowing the spatial autocorrelation value can assist in

determining the parts of the geographical network topology where the

virus will spread. Different types of intrusions may have different values

of spatial autocorrelation. This research has only concentrated on one

specific type of intrusion, the network worm.

The end result of the spatial analysis component is a model with

one variable, that is, the starting point of an epidemic. This model is

called the spatial flow model. A special spatial flow detection algorithm

85

is used to identify the existence of a particular virus model, if several

exist.

Once the appropriate model is determined, the spatial prediction

component locates the current instance of intrusions on the LAN.

When the spatial analyzer receives an alert from the data analyzer

component, the spatial analyzer completes mathematical calculations

to determine the flow pattern. This flow pattern determines the next

subnet the worm may attack. The spatial analyzer component forwards

this information to the notification component. The notification

component can then determine the kind of notification that must be

provided and to whom. The notification component is detailed further in

the next section.

86

6.1.5 Notification Component

The notification component is at the end of the MIDS workflow

architecture. It handles the task of deciding which notification method

should be used, depending on previous responses, time of day, and

severity of the threat.

The notification component interfaces with a database

containing contact information for the network administrators of the

various subnets. The primary methods of notification currently

envisioned are e-mail, pager messages, and instant messages that

can be used individually or in combination, depending on the severity

of the situation. This module has been split into two components in the

architectural diagram to emphasize the exact part with which the other

modules interact.

The notification methods can depend on the level of emergency

as determined by the data analyzer component. Several strategies of

dynamic takeover of system resources have been suggested.

However, system management must determine implementation of

such strategies.

87

6.2 Example Usage Scenario

In this section, a usage scenario for the MIDS is described. To

highlight the important steps that must be taken during set-up, the

implementation process is also described.

An enterprise, ABC Corporation, decides to implement the

MIDS for active detection and prediction of virus spread through the

LAN. The first step is to analyze previous occurrences of virus on their

LAN. For this purpose, they accumulate historical data about virus

occurrences on the LAN from a global DIDS, such as Dshield. They

determine the spatial autocorrelation of previous virus occurrences on

the LAN and store this information in a database.

The MIDS system, described above, is installed after primary

testing. System administrators can choose to show the display to

internal staffers. Such a display can help identify the progression of

intrusions across the LAN.

A new worm, New.Worm, begins spreading across the Internet

at midnight. The global DIDS at Dshield detects this activity at 2 am. A

message is sent that contains the virus name, the port number the

virus uses to spread, and the speed of spread. This message is

received by the alert mechanism at ABC.

The spatial analysis component searches for incidences on the

LAN where a computer might be trying to spread the virus using the

port number mentioned in the Dshield notification. An incidence is

identified in the north corner of the ABC campus.

Using the predetermined spatial autocorrelation value, along

with any corresponding model that may be stored, an analysis is

88

performed on the structure of the LAN. Depending on the prediction of

the spread and the intensity of the worm, several system

administrators in the northern area of the campus are paged

immediately to react to and impede the flow of the virus in that

quadrant. The remaining system administrators are notified of the

situation via e-mail.

At approximately 5 am, the virus spread has begun to slow

down globally. The Dshield message center updates its information

and sends it out. Detecting this slow down, the MIDS alert mechanism

at ABC Corporation updates the notification component to reduce the

emergency level.

Several system administrators in the west and east quadrants of

the campus, where the spatial spread was most probable, have been

paged by this time. However, due to the lowering of the emergency

status, the remaining system administrators are not paged at this time.

However, an e-mail update notifies them of the reduction in intrusions.

Although the remaining system administrators have not been

disturbed, a close watch on intrusions is maintained. In case of a

change in status of the spread of the worm, the notification system can

begin actively paging the remaining system administrators.

89

7 Conclusions and Future Work

7.1 Conclusions

This research addressed the spatial spread of computer

network worms. Earlier research has focused primarily on the time-

series spread of network worms. Time-series models have potential

for predicting the total number of computers that a worm will infect.

However, they cannot predict the next subnet or area that will come

under attack.

For the purpose of tracking the spatial spread of worms,

related research in similar fields was examined. Similarities

between plant and computer epidemics were presented, along with

the reasons for the choice of investigating plant epidemiology.

Parameters such as clustering indexes and autocorrelation were

discussed in the context of network worms. Spatial autocorrelation

was chosen as the statistical property for investigation. The primary

benefit of choosing spatial autocorrelation is that a single value is

obtained that signifies if the values of occurrence of a virus in a

certain place are indicative of its neighbor becoming infected. The

objective was to determine if a relation among the spread of worms

within a LAN exists. Methods from epidemiology were used for this

purpose.

Analysis was conducted on three network worms: MS

Blaster (August 2003), SQL Slammer (January 2003), and Linux

Slapper (September 2002). Data was obtained from the Dshield

DIDS. The spatial spread in the Virginia Tech LAN was analyzed in

the geographical and topological contexts.

90

The geographical spread was analyzed by dividing a 1:50

scaled map of Virginia Tech into equal sized grids. Grid spaces

where computers did not exist were eliminated from the analysis.

All grid spaces sharing a corner or a side with the grid cell under

consideration were considered as neighbors.

The topological case was analyzed using the network

topology of the LAN. The virus spread was considered at the Class

C network level. All Class C networks under the same core router

were considered as neighbors.

Data analysis was conducted using the data obtained from

the Dshield database. The neighborhood structure was determined

as mentioned earlier. Moran’s I value of spatial autocorrelation was

calculated for each case. An agreement test was conducted to test

if the spatial spreads of the three viruses were similar.

The spread of the three viruses, considering the topology of

the Virginia Tech network, indicated mixed results. While the

spreads for Slammer and Slapper indicated a positive spatial

autocorrelation, the Blaster worm spread was spatially

independent. The agreement test for Slammer and Slapper showed

that the spreads were not the same. This finding indicates that the

spread of a network worm is not dependent on the topographical

structure of the network.

The results of the geographic analysis indicated that the

three viruses spread in a spatially dependent way. Further, the

agreement test on the spatial autocorrelation values showed that

the spread pattern of the three worms was similar in the

geographical context. This finding indicates that if a new network

worm with the same characteristics as those of the worms

91

examined were to start spreading across Virginia Tech’s campus, a

similar spatial autocorrelation value could be expected.

The geographic locations where a new network worm would

spread might be extrapolated from these findings. This process

would involve determining the geographic grid locations that the

worm has already affected. Using the spatial autocorrelation value,

some reverse engineering may be required. A network

administration database can help identify the personnel responsible

for managing the network. With this goal in mind, the design of the

MIDS system was outlined. MIDS can issue warnings to network

administrators about the spread of a worm to their networks.

Network worms spread via computer networks. However,

their spread shows a geographical dependency. Consequently, this

result was not intuitive and in fact, was surprising. A few

conjectures may explain the reason for such a geographical

dependency.

Conjecture 1:

Humans tend to breed in similarity, i.e., similar individuals

live in close geographical proximity. Due to this, trust

relationships exist between geographically close computer

networks. Since trust relationships are unchecked by

firewalls, this trust enables a higher number of computers in

the geographic vicinity to become infected. For example,

most administrative buildings at Virginia Tech lie in the same

geographic vicinity. A trust relationship exists between the

networks of these buildings. Firewall rules allow these

networks to communicate on unprotected ports. An infected

computer in Virginia Tech’s admissions office is more likely

92

to infect a computer in the president’s office than a computer

in a student’s residence hall.

Also, the results show a surprising skew for the p-values of

spatial autocorrelation in only one case – the topological analysis of

blaster. The p-value for Blaster in the topological analysis is 0.95

(Table 4). Another conjecture may explain this occurrence.

Conjecture 2:

The level of security awareness among Virginia Tech’s

network administrators was extremely high when the Blaster

worm started propagating. The reaction of the Virginia Tech

networking group to the Blaster worm was immediate. All

traffic leaving Virginia Tech’s network over port 135 (the port

that Blaster used to spread) was blocked at the Virginia Tech

core router minutes after news of the new worm became

available. The isolation caused by the network block affected

the spread of the worm in the network topology.

93

7.2 Future Work

This research has demonstrated the possibility of detecting the

spatial spread of a network worm. A sample field of study, plant

epidemiology, can be used in analyses so that further models in this

field can be directly or indirectly applied to computer epidemiology.

Although spatial autocorrelation is indicated by this research to exist in

the geographic context, other parameters may better indicate the

spatial spread of network worms. In particular, SADIE clustering

indexes [Perry, 2001] show promise in determining the areas most

susceptible to a virus.

This research concentrated on network worms, a specific type

of computer viruses. Further research would be helpful on different

types of computer viruses.

The analysis of a network worm requires time, and a high

amount of skill is needed to reverse engineer a computer virus. This

research indicates a high consistency in the spatial autocorrelation

value in the geographical spread of the worm. If a new virus shows a

spatial autocorrelation value consistent with a certain kind of computer

virus, then the characteristics of the worm may become immediately

apparent. This data would save analysts from complex reverse

engineering. These methods could even benefit reactive security

methods so that holes in network defenses can be immediately

plugged. However, further research is required to determine if these

methods could be used for this purpose.

94

References

Airwise News (2003) "Worm affects Air Canada", August 20, 2003 <

http://news.airwise.com/stories/2003/08/1061375870.html>

American Heritage Dictionary (2000), "Definition of epidemic", January

11,2004 <

http://dictionary.reference.com/search?q=epidemic&r=67>

Anderson, R. and May, R. (1985) "Age related changes in the rate of

disease transmission: implications for the design of vaccine

programmes", Journal of Hygiene (Cambridge), 94:365-436, 1985

Anderson, R. and May, R. (1984) "Spatial temporal and genetic

heterogeneity in host populations and the design of immunization

programmes", In IMA journal of Mathematics applied in medicine

and biology, 1984

Anselin, L. (1995) "Local indicators of spatial association - lisa,"

Geographical Analysis, 27:-115, 1995

Baldwin, Lawrence (2001) "MyNetWatchman - Vision", December 20,

2003 <http://www.mynetwatchman.com/vision.htm>

Balthrop, J., Forrest, S., Newman, M., and Williamson, M.,

(2004)"Technological Networks and spread of computer viruses",

Science 23 April 2004: 527-529

Bautts, Tony (2003), Slow Down Internet Worms with Tarpits, Security

Focus, < http://www.securityfocus.com/infocus/1723>, August 21,

2003

Bolker, B. (1997) "Heterogenity of mixing and spatio-temporal models:

advances and open problems", In RSS Epidemics Workshop 1997

Botha, M. and Von Solms, R. (2003), "Utilizing fuzzy logic and trend

analysis for effective intrusion detection", Computers and Security,

Volume 22, Issue 5, July 2003

Broersma, M. (2003) "Slammer-the first Warhol worm?", CNET News,

January 15, 2004 < http://news.com.com/2100-1001-983197.html>

95

CAIDA (2001), "Code Red Spread Animations", Animated GIF, September

23, 2001, < http://www.caida.org/analysis/security/code-

red/newframes-small-log.gif>

Campbell, C. and Madden, L. "Introduction to Plant Disease

Epidemiology", pp 161-201, John Wiley 1990

Center for Disease Control (2003a), "An Introduction to Epidemiology",

Excite Classroom

Center for Disease Control (2003b), "Basic Information about SARS",

January 16, 2004 < http://www.cdc.gov/ncidod/sars/factsheet.htm>

Cheswick, B., Kocher P., McGraw G.and Rubin A., (2003) "Bacon Ice

Cream: The Best Mix of Proactive and Reactive Security", Networld

+ Interop Conference, April 27 –May 2, 2003

Chou, (1997) "Exploring Spatial Analysis in Geographic Information

Systems" Santa Fe, OnWord Press 1997

Cliff, A.D. and Ord, J.K. (1981) "Spatial Processes: Models and

Applications" Pion Press

Computer Security Institute (2003), 2003 CSI/FBI Computer Crime and

Security Survey, <http://www.gocsi.com/press/20030528.jhtml>,

Aug 5, 2003

Daley, D.J. and Gani, J. (1999), "Epidemic Modeling, An Introduction",

Cambridge University Press, 1999

Diniz-Filio, J., De Campos Telles, M. (2002), '' Spatial Autocorrelation

analysis and the identification of operational units in conservation of

continuous population‘’, Conservation biology, August 2002,

Volume 16, Issue 4, Page 924

Dshield (2001), "Dshield: About", December 21, 2003,

<http://www.dshield.org/about >

Frauenthal, J. (1980) "Mathematical Modeling in Epidemiology", Springer-

Verlag

Frederick, K. (2002), "Network Intrusion Detection Signatures- Part 3",

January 18, 2004 <http://www.securityfocus.com/infocus/1544>

96

Garfinkel, S., Spafford, G. and Schwartz, A. (2003) "Secure Programming

Techniques: Part 4", Practical Unix and Internet Security, 3rd

edition, O'Rielly Publication

Geary, R. C. (1954). "The contiguity ratio and statistical mapping",

Incorporated Statistician 5:115-145

Goodchild M. (1987), "A spatial analytical perspective as geographical

information systems", International Journal of Geographical

Information Systems1 (4): 327-34

Haining, R. (1990), "Spatial data analysis in the social and environmental

sciences", Cambridge: Cambridge University Press

Inella, P. (2000), "The evolution of Intrusion Detection Systems",

SecurityFocus, November 16, 2001,

<http://www.securityfocus.com/infocus/1514>

Kephart, J. O., Chess D. M. and White S. R. (1993), "Computers and

Epidemiology", In IEEE Spectrum, 1993

Kermack, W. and McKendrick, A. (1932) "A contribution to the

mathematical theory of epidemics. Part II. The problem of

endemicity", Proceedings of the Royal Society of London, 138:55-

83, 1932

Korzyk, A. Sr. (1988) "A Forecasting Model For Internet Security Attacks,"

National Information System Security Conference, 1998

Kriedl, O. and Frazier, T. (2003) "Feedback control applied to survivability:

a host-based autonomic defense system", IEEE transactions on

Reliability, Vol 52, No. 3 2003

Lemos, R. (2004) "Seeds of Destruction", Cnet News, January 15, 2004

Liu, P. and Li, L. (2002) "A Game Theoretic Approach to Attack

Prediction", Technical Report, PSU-S2-2002-001, Penn State

Cyber Security Group, 2002

Marchany, R. (2003) "VT-Dshield site is online- need volunteers", Virginia

Tech Techsupport listserv, < http://listserv.vt.edu/cgi-

bin/wa.cgi?A2=ind030>

97

Matheron, G. (1963), "Principles of Geostatistics", Economic Geology, 58,

1246-66

Moore, D. and Shannon, C. (2001), "The spread of the Code-Red worm",

CAIDA analysis, <http://www.caida.org/analysis/security/code-

red/coderedv2_analysis>

Moore, D., Shannon, C., Voelker, G.M. and Savage, S. (2003) "Internet

Quarantine: Requirements for Containing Self-Propagating Code",

In IEEE INFOCOM, 2003

Moran, P. (1948), "The interpretation of statistical maps. Journal of the

Royal Statistical Society", Series B, 10:243-251

Morris, M. (1994) "Epidemiology and Social Networks: modeling structured

diffusion", In Wasserman, S. & Galaskiewicz, J., editors "Advances

in Social Network Analysis: Research in the social and behavioral

sciences”, pg 26-52, Sage, 1994

MySQL (2001) "MySQL Database Server", <

http://www.mysql.com/products/mysql/index.html>

Nojiri, D., Rowe, J. and Levitt, K. (2003) "Cooperative Response strategies

for large-scale attack mitigation", DARPA Information Survivability

Conference (2003)

Ord, J.K. and Getis, A. "Local Spatial Autocorrelation Statistics:

distribution issues and an application", Geographical Analysis, 27:-

306, 1995

Orman, H. (2003), "The Morris Worm: a fifteen year perspective", IEEE

Security and Privacy, Volume 1, Issue 5, Sept - Oct 2003

Paquette, J. (2000) "A history of viruses", SecurityFocus, January 16,

2004 < http://www.securityfocus.com/infocus/1286>

Perry, J. (2001) "SADIE", SADIE home pages

Reuters (2004), "PC viruses spawn $55 billion loss in 2003", CNET News,

January 16, 2004 < http://news.com.com/2100-7349-

5142144.html?tag=cd_top>

98

Robbins, Royce, "Distributed Intrusion Detection Systems: An Introduction

and Review", SANS Reading Room, GSEC Practical Assignment,

2002

Salkever, A. (2001), "Patches don't make a security blanket",

BusinessWeek Online, January 19, 2004

<http://www.businessweek.com/bwdaily/dnflash/aug200

SANS Institute (2001a), "About SANS", December 26, 2003

<http://www.sans.org/aboutsans.php>

SANS Institute (2001b), "Internet Storm Center: About", December 20,

2003, <http://isc.incidents.org/about.html>

Schneier, B. (2003), "Did Blaster cause the blackout", ZDNet, January 12,

2004 < http://computercops.biz/article4427.html>

Silicon Defense, Inc. (2002) "Counter Malice- About", January 19, 2004 <

http://www.silicondefense.com/products/countermalice/>

Snort Network Intrusion Detection System (2000), "About: Snort", January

12, 2004<http://www.snort.org>

Staniford, S. (2003) "Containment of scanning worms in enterprise

networks", To appear in Journal of Computer Security

Staniford, S., Paxson, V. and Weaver, N. (2002), "How to 0wn the Internet

in your spare time", 11th Usenix Security Symposium

Symantec corporation (2000a), "Reference: virus", January 11, 2004 <

http://securityresponse.symantec.com/avcenter/refa.html - virus>

Symantec corporation (2000b), "Reference: worm", January 11, 2004 <

http://securityresponse.symantec.com/avcenter/refa.html - worm>

Symantec Corporation (2002), "Linux. Slapper. Worm", January 10, 2004

<

http://securityresponse.symantec.com/avcenter/venc/data/slapper.

worm.html>

Symantec Corporation (2003), "W32. Blaster. Worm", January 10, 2004 <

http://securityresponse.symantec.com/avcenter/venc/data/w32.blas

ter.worm.html>

99

Tobler, W. R. (1970) "A Computer Model Simulating Urban Growth in the

Detroit Region" in Economic Geography, 46: 234-240

Travis G., Balas, E., Ripley, D. and Wallace, S. (2003), "Analysis of SQL

Slammer worm and it's effects on Indiana University and related

institutions", University of Indiana, Technical Report

Ullrich, J. (2000), "DSHIELD", January 6, 2004 ,<http://www.dshield.org>

Unix Manual Pages, "Rand ()"

Wassenar, T. and Blaser, M. (2002) "Contagion on the Internet: Letter to

the editor", Emerging Infectious Diseases, Vol 8, March 2002

Williamson, M. (2002) "Throttling Viruses: Restricting Propagation to

Defeat Mobile Malicious Code" In Annual Computer Security

Applications Conference, 2002

Yurcik, W., Korzyk, A. and Loomis, D. (2000) "Predicting Internet Attacks:

On Developing An Effective Measurement Methodology" 18th

Annual International Communications Forecasting Conference

(ICFC'02)

Zou, C.C., Gong W., and Towsley, D. (2002) "Code Red Worm

Propagation Modeling and Analysis". 9th ACM Conference on

Computer and Communication Security

Zou, C.C., Gong, W., and Towsley, D. (2003) "Worm Propagation

Modeling and Analysis under Dynamic Quarantine Defense ".

Workshop on Rapid Malcode (WORM'03) 2003

100

Appendix
Appendix A

Appendix A.1: main.cpp
#include <iostream>
#include <fstream>
#include <string>
#include "checks.cpp"
#include "grid.cpp"
#include "db_test.cpp"
using namespace std;
//function defintions
bool printFirstLine(char, char, int, int, int[100][19]);

int main(int argc, char* argv[]){
 if(argc != 3){
 cout<< "thesis needs two argument to be run: geo or
topo"<<endl;
 exit(1);
 }

 // GEOGRAPHICAL CASE
 if (strcmp(argv[1], "geo") == 0){

char temp1 = 'A';
char temp2 = 'R';
int temp3 = 18;
int size = (int(temp2)-int(temp1))*temp3;
int grids[100][19];

Grid G;
 //print first line containing names of the grids

bool check = printFirstLine(temp1, temp2, temp3, size,
grids);
 if (check == false)
 {
 valueCheck C;
 C.fatalError("printFirst line failed");
 }

 // get in input from the command line and store as
string
 FILE * inputfile;
 inputfile = fopen(argv[2], "r");
 char input[1000];
 fscanf(inputfile, "%s", input);
 fclose(inputfile);

101

 // for every grid square
 for (int i = int(temp1); i <= int(temp2); i++){
 for(int j = 1; j <=temp3; j++){
 //create copy of grids array to edit for
each grid
 int gridvalue[100][19];
 for (int grid1 =0; grid1<100;grid1++){
 for(int grid2=0;grid2<19;grid2++){
 gridvalue[grid1][grid2] =
grids[grid1][grid2];
 }
 }
 char tempgrids[8][5];
 //find list of neighbors
 G.findNeighbors(i,j, tempgrids);
 for(int no = 0; no < 8; no++){
 //add ; at the end of the actual string
so that no half matches are inadvertently found, i.e. A1
does not match A12
 strcat(tempgrids[no], ";");
 //check if neighbor is in input file;
if it is leave it at 0, else print 1
 if(strstr(input, tempgrids[no]) ==
NULL){
 char letter = tempgrids[no][0];
 int number=0;
 // atoi and direct casting did not
work. Therefore a hard cast is made

 for (int num=1; tempgrids[no][num]
!= ';'; num++){
 int tempnumber =
int(tempgrids[no][num]) -48;
 number = (number*10) +
tempnumber;
 }
 gridvalue[(int)letter][number]=1;
 }
 }
 //now print everything
 cout<<endl;
 cout<<char(i)<<j<<":";
 for (int no1=int(temp1);
no1<=int(temp2);no1++){
 for (int no2 = 1; no2<= 18; no2 ++){
 cout<<gridvalue[no1][no2]<<":";
 }

102

 }
 }
 cout << endl;
 }
 }
 else{
 //TOPOLOGICAL CASE
 if (strcmp(argv[1], "topo") == 0){
 //do topological stuff
 int grids[255];
 cout<<" :";
 //first print first line and store all the
information in a grid
 for (int i =0; i<256;i++){
 grids[i] = 0;
 cout <<i<<":";
 }
 cout<<endl;

 //access database and find out what
 dbAccess dbQuery;
 dbQuery.connection();

 for(int i=0;i<255;i++){
 int retval = dbQuery.get_data(i);

 if(retval != 0){
 cout<<"Problems in output"<<endl;
 exit(1);
 }

 }
 }
 else {
 cout<< "argument can only be geo or topo"<<endl;
 exit(1);
 }
 }
 cout<<endl;
 return 0;
}

/**
* function to print the first line of o/p, list of all
possible nodes
**/
bool printFirstLine(char start, char end, int max, int
size, int grids[100][19]){

103

valueCheck C;
if (!C.is_char(start) || !C.is_char(end) ||

!C.is_int(max) || !C.is_int(size)){
C.fatalError("printFirstLine needs characters to

be passed first");
}
 cout <<":";

 for (int op= int(start); op<=int(end);op++){
char temp[2];
temp[0]=char(op);
temp[1]='\0';
//print header line
for (int k=1;k<=max;k++){

 char temp1[3];
sprintf(temp1,"%d",k);

 char abstemp[2]="\0";
 int n;
 for (n=0; temp[n] != '\0'; n++){
 abstemp[n] = temp[n];
 }
 abstemp[++n] = '\0';
 char* temp3 = strcat(abstemp,
temp1);
 //cout<<"op"<<op<<"k"<<k<<endl;
 grids[op][k] = 0;

//cout<<grids[op][k]<<endl;
 for(int count=0;temp3[count] !=
'\0';count++){

cout<<temp3[count];
}
cout<<":";

}
}
cout<<endl;

 return true;
}

104

Appendix A.2: grid.cpp
/*
 * grid.cpp
 * thesis
 *
 * Created by rishi pande on Fri Mar 05 2004.
 *
 */
#include <iostream>
#include <string>
//#include "checks.cpp"
using namespace std;

class Grid{
 private:
 //void callGridName(int, int, int, char[8][5]);
 //void formGridName(int, int, char[4]);
 //friend fatalError(char*);
 /*
 * function callGridName
 * Just a simple function to repeatedly call
formGridName for parameters given
 * If out of bounds check fails, the termpgrid is
populated with 0
 */
 void Grid::callGridName(int gridletter, int gridnumber,
int tempgridnumber, char tempgrid[8][5]){

char neighbors[4];
 char start = 'A';
 char end = 'R';
 //bounds check with hard-coded values :(
 if ((gridletter >= int(start) && gridletter <=
int(end)) && (gridnumber>0 && gridnumber<19) &&
(tempgridnumber>=0 && tempgridnumber <8)){
 formGridName(gridletter, gridnumber,
neighbors);
 int no;
 for(no = 0; neighbors[no]!='\0'; no++){
 tempgrid[tempgridnumber][no] =
neighbors[no];
 }
 tempgrid[tempgridnumber][no] = '\0';
 }
 else {
 tempgrid[tempgridnumber][0] = '\0';
 }

105

 }

 /*
 * function formGridName
 * input int i ASCII value of grid letter
 * int j integer value of grid number
 * char gridname[4] string stroing the grid
name
 *
 * forms the gridname for the values supplied
 */
 void Grid::formGridName(int i, int j, char
gridname[4]){
 //form the gridname of the focus cell

char letter[4];
 letter[0] = char(i);

letter[1] = '\0';
 char number[3];
 sprintf(number,"%d",j);
 strcat(letter, number);
 int no;
 for (no=0; letter[no]!= '\0'; no++){
 gridname[no] = letter[no];
 }
 gridname[no] = '\0';
 }

 public:
 //void findNeighbors(int, int, char[8][5]);
 char tempgrid[8][5];
 Grid(){}
 ~Grid(){}

 /*
 * Find's all the neighbors by queen's neighborhood
definition
 */
 void Grid::findNeighbors(int i, int j, char
tempgrid[8][5]){

/*valueCheck C;
if (!C.is_int(i) || !C.is_int(j)){

C.fatalError("findNeighbors requires integer
parameters");

exit(1);
}*/

106

 //calculate all neighbors for queen's move
 //down row, same column
 int gridletter= i+1;
 int gridnumber= j;
 callGridName(gridletter, gridnumber, 0, tempgrid);

 //up row, same column
 gridletter = i-1;
 gridnumber = j;
 callGridName(gridletter, gridnumber, 1, tempgrid);

 //up row, left column
 gridletter = i-1;
 gridnumber = j-1;
 callGridName(gridletter, gridnumber, 2, tempgrid);

 //same row, left column
 gridletter = i;
 gridnumber = j-1;
 callGridName(gridletter, gridnumber, 3, tempgrid);

 //down row, left column
 gridletter = i+1;
 gridnumber = j-1;
 callGridName(gridletter, gridnumber, 4, tempgrid);

 //up row, right column
 gridletter = i-1;
 gridnumber = j+1;
 callGridName(gridletter, gridnumber, 5, tempgrid);

 //same row, right column
 gridletter = i;
 gridnumber = j+1;
 callGridName(gridletter, gridnumber, 6, tempgrid);

 //down row, right column
 gridletter = i+1;
 gridnumber = j+1;
 callGridName(gridletter, gridnumber, 7, tempgrid);
 }

};

107

Appendix A.3: db_test.cpp
#include <iostream>
#include <iomanip>
#include <string>

#include <mysql.h>
//#include <libmysqlcient.a>
using namespace std;

class dbAccess{
 private:
 MYSQL *cnx_init;
 MYSQL *cnx_db;
 MYSQL_RES *result_set;
 MYSQL_RES *subnet_result_set;
 MYSQL_ROW row;

 unsigned int ctr;

 public:
 dbAccess(){};
 ~dbAccess(){};

 //starts the connection to the mysql database
 void connection(){
 cnx_init = mysql_init(NULL);

if (cnx_init == NULL){
cout<<"problems in mysql_init"<<endl;
exit(1);

}
cnx_db = mysql_real_connect (cnx_init, "localhost",

"root",
"samtron40BN", "building", 0, NULL, 0);

if (cnx_db == NULL){
cout<<"failure in connect"<<endl;
exit(1);

}
 }

 int get_data(int temp){

 unsigned long dec = ip2Dec(temp);
// cout <<"dec"<<dec;

108

 char query_string[99] = "select region from
vt_lookup where (start<='";
 char decStr[25];
 sprintf(decStr, "%lu", dec);
// cout<<"DEcstr:"<<decStr;
 strcat(query_string, decStr);
 // strcat(query_string, dec);
 strcat(query_string, "' and end >='");
 strcat(query_string, decStr);
 strcat(query_string, "')");

 if (mysql_query(cnx_init, query_string)!= 0){
cout<<"query failed"<<endl;
exit(1);

}
else {

result_set = mysql_store_result(cnx_init);
if (result_set == NULL){

cout<<"mysql_store_result bombed"<<endl;
exit(1);

}
else{

 cout<<temp<<":";
 if(mysql_num_rows(result_set) == 0){
 for(int i =0 ; i<256; i++){
 cout<<"0:";
 }
 cout<<endl;
 }
 while((row =
mysql_fetch_row(result_set)) != NULL){
 for (ctr = 0;
ctr<mysql_num_fields(result_set); ctr++){
 char region[20];
 strcpy(region, row[ctr]);
 cout<<"region:"<<region<<endl;
 int numneighbors =
getNeighbors(region);
 }
 }

}
}

return 0;
 }

109

 //displays all elements of the result set one by one
 //Useful for error checking
 void show_result_set(MYSQL_RES *in_result_set){

 while((row = mysql_fetch_row(in_result_set)) !=
NULL){

for(ctr=0;ctr<mysql_num_fields(in_result_set);
ctr++){

if (ctr>0){
cout<<"\t";

 printf("%s",
row[ctr]!=NULL?row[ctr]:"Null-val");

}
cout<<"\n";

}
 }

 if (mysql_errno(cnx_init) != 0){
cout<<"Fetch row Error"<<":";

cout<<mysql_errno(cnx_init)<<mysql_error(cnx_init)<<endl;
exit(1);

 }

mysql_free_result(in_result_set);
 }

 //takes in class c address and gives back the decimal
form for it
 long ip2Dec(int i){
 long precalc = ((128*256)+173)*256;
 unsigned long Dec = (precalc + i)*256;
 return Dec;
 }

 //converts decimal form to ip address and returns class
c address
 int dec2Ip(unsigned long addr){
 unsigned long addr1 = addr/256;
 int subnet = ((addr1)%256);
 return subnet;
 }

 //finds out the neighbors, and puts them in an array
and prints to screen
 int getNeighbors(char region[20]){

110

 int neighbors= 0;
 //form the query
 char numSubnetQuery[99] = "Select start, end from
vt_lookup where region like '%";
 strcat(numSubnetQuery, region);
 strcat(numSubnetQuery, "%'");
 //run the query
 if (mysql_query(cnx_init, numSubnetQuery)!= 0){
 cout<<"subnet query failed"<<endl;
 exit(1);
 }
 else {
 subnet_result_set =
mysql_store_result(cnx_init);
 if (result_set == NULL){
 cout<<"mysql_store_result bombed"<<endl;
 exit(1);
 }
 else{
 neighbors =
mysql_num_rows(subnet_result_set);
 //cout<<"Number of
neighbors"<<neighbors<<endl;
 // now check if there is more than 1 subnet
in any of the neighbors
 int neighbor_weights[256][4];
 int temp_neighbor_weights[100];
 int partitionArray[100][3];//keep
partition-parent information
 int i=0;// used to maintian count of
neighbor_weights
 int j=0;// used to maintian count of
temp_neighbor_weights
 int partition = 0; // used to track the
router partition
 int count =0;

 while((row =
mysql_fetch_row(subnet_result_set)) != NULL){
 char *pEnd;
 unsigned long start = strtoul(row[0],
&pEnd, 0);
 unsigned long end = strtoul(row[1],
&pEnd, 0);
 if ((end-start) > 256){
 //cout<<"More than one subnet
here:";

111

 int numIntSubnets = (end-
start)/255;
 // cout<<numIntSubnets<<"subnets:";
 int firstsubnet = dec2Ip(start);
 // cout<<firstsubnet;

addNeighborWeights(neighbor_weights, firstsubnet,
numIntSubnets, 1, partition, i++, partitionArray, count);
 for (int n =0; n != (numIntSubnets
- 1);n++){

addNeighborWeights(neighbor_weights, ++firstsubnet,
numIntSubnets, 1, partition, i++, partitionArray, count);
 }
 //cout<<"\t";
 partition++;
 }
 //handle case when only 1 subnet exists
 else{
 // make sure that it is not a
single host connected to the router. e.g. DNS host
 if ((end-start) > 10 && (end-start)
< 256){
 int subnet = dec2Ip(start);

 int flag = 0; // to check for
duplicate values
 for(int n=0; n<j;n++){
 if(temp_neighbor_weights[n]
== subnet){
 flag = 1;
 }
 }
 // only adds if not duplicate
 if (flag == 0){
 temp_neighbor_weights[j++]
= subnet;
 }
 }
 }

 }
 //now transfer all the temporary subnets to
this
 for (int n = 0; n<j &&
temp_neighbor_weights[n] < 256 && temp_neighbor_weights[n]
>= 0; n++){

112

 addNeighborWeights(neighbor_weights,
temp_neighbor_weights[n], j-1, 0, -1, i++, partitionArray,
count);
 }

 cout<<"Neighbor array:";
 int n = 0;
 while (n<i && neighbor_weights[n][0] !=
666){
 cout<<"["<<neighbor_weights[n][0];
 cout<<"|"<<neighbor_weights[n][1];
 cout<<"|"<<neighbor_weights[n][2];
 cout<<"|"<<neighbor_weights[n][3];
 cout<<"]";
 n++;
 }
 cout<<"partitionarray:";
 int temp = 0;
 while(temp <count &&
partitionArray[temp][0] != 666){
 cout<<"["<<partitionArray[temp][0];
 cout<<"|"<<partitionArray[temp][1];
 cout<<"|"<<partitionArray[temp][2];
 cout<<"]";
 temp++;
 }
 }
 }
 cout<<endl;
 return neighbors;
 }

 //find out th epartition etc of the neighbor and add it
to the array
 void addNeighborWeights(int neighbor_weights[256][4],
int subnetnumber, int numIntSubnets, int level, int
partition, int row, int partitionArray[100][3], int
&count){
 if (subnetnumber>=0 && subnetnumber < 256){// don't
do any thing if subnet umbr is greater than 256
 int flag = 0; // to check for duplicates
 for(int n =0; n<row;n++){
 //if duplicate exists
 if(neighbor_weights[n][0] == subnetnumber){

113

 if (level != 0){ // if duplicate exists
and level is 0, we don't want to do anything
 //increase it's level
 neighbor_weights[n][2] += 1;
 // whichever partition has the
smaller number of subnets, the subnet belongs to it
 if(neighbor_weights[n][1] >
numIntSubnets){
 // now the subnet at higher
level has weakened. Therefore we need to reduce the number
of neighbor subnets there
 for(int x =0; x < row; x++){
 if ((neighbor_weights[x][3]
== neighbor_weights[n][3]) && (neighbor_weights[x][2] ==
(neighbor_weights[n][2]-1))){
 neighbor_weights[x][1]
-= 1;
 }
 }

add2PartitionArray(partitionArray, numIntSubnets,
neighbor_weights[n], partition, count);

 neighbor_weights[n][1] =
numIntSubnets;
 neighbor_weights[n][3] =
partition;

 }
 }

 flag = 1;
 }
 }
 //duplicate does not exist
 if (flag == 0){
 neighbor_weights[row][0] = subnetnumber;
 neighbor_weights[row][1] = numIntSubnets;
 neighbor_weights[row][2] = level;
 neighbor_weights[row][3] = partition;
 neighbor_weights[row+1][0] = 666;
 add2PartitionArray(partitionArray,
numIntSubnets, neighbor_weights[row], partition, count);
 }
 }
 }

114

 //manipulates the partition array
 void add2PartitionArray(int partitionArray[100][3], int
numIntSubnets, int neighbor_weights[3], int partition, int
&count){
 int flag1 = 0;
 //now check if the artition exists in the partition
array
 for(int r=0; r<count && flag1 !=1;r++){
 if(partitionArray[r][0] == partition){
 flag1 =1;
 }
 }
 //if partition does not exist, add to partition
array along with parent information
 if (flag1 != 1){
 partitionArray[count][0] = partition;
 partitionArray[count][1] = numIntSubnets;
 // if the added neighbor is at level 1, it's
parent is 0
 if (neighbor_weights[2] == 1){
 partitionArray[count][2] = -1;//forced
partition number
 }
 // if added neighbor is at level 0
 else if (neighbor_weights[2] == 0){
 partitionArray[count][2] = -5;//NOTE:-5
should not exist as a partition ever. This is just so that
we can distinguish those at level 0
 }
 //this means it's being pushed down the
level
 else{
 partitionArray[count][2] =
neighbor_weights[3];//value of parent
 }
 partitionArray[count+1][0] = 666;
 count++;
 }
 }

 //calculation of actual weights
 //NOTE::This is the heart of the topological code and
in fact the reason for doing all this
 void calculateWeights(int neighbor_weights[256][4],
float weights[256], int partitionArray[100][3], int
myself[4]){

115

 for(int i = 0; i<256; i++){
 int flag = 0;
 for(int n=0; neighbor_weights[n][0] !=666 &&
flag != 1; n++){
 if (neighbor_weights[n][0] == i){
 flag = 1;
 }
 }
 //found it
 if (flag == 1){
 //check if they are in the same partition
 if(myself[3] == neighbor_weights[n][3]){
 weights[i] = 1/neighbor_weights[n][1];
 }
 //check if one is the child of other
 else if(searchpartition(myself[3],
neighbor_weights[n][3], partitionArray) == 0)
 }
 //not in neighborhood
 else{
 weights[i] = 0.0;
 }

 }
 }

 //will return 0 if one is the other's child
 int searchPartition(int firstsubnet, int secondsubnet,
int partitionArray[100][3]){
 int temppartitionarray1[3];
 int temppartitionarray2[3];
 int intermediatepartition[3];
 int returnvariable = 1;

 //find partition numbers for both subnets
 inpartition(firstsubnet, partitionArray,
temppartitionarray1);
 inpartition(secondsubnet, partitionArray,
temppartitionarray2);

 //first see if the first subnet exists in the
second subnets path to core router
 while (intermediatepartition[2] !=
temppartitionarray1[0]){
 inpartition(intermediatepartition[2],
partitionArray, intermediatepartition);
 }
 // if it exists will exit while loop prematurely

116

 }

 void inpartition(int subnet, int
partitionArray[100][3], int temppartitionarray[3]){
 int flag = 0;
 for(int n=0; partitionArray[n][0] !=-1 && (flag
!= 1 || flag1 !=1); n++){
 if (partitionArray[n][0] == subnet){
 temppartitionarray = partitionArray[n];
 flag = 1;
 }
 }

 }
};

117

Appendix A.4: checks.cpp
#include <iostream>
#include <string>

using namespace std;
#define MAX_INT 2147483647

class valueCheck{
private:

enum {NOT_INT, INT};
public:
valueCheck(){}
~valueCheck(){}
bool is_str(string n)
{

if (n.empty()){
return false;

}
else {

return true;
}

}

bool is_char(char n){
if ((n >= 'A' && n<='Z') || (n>='a' && n <= 'z'))
{

return true;
}
else {

return false;
}

}

bool is_int(int n){
if ((n > 0) && (n < MAX_INT)){

return true;
}
else{

return false;
}

}

 /**
 * Function fatalError
* input string
* output void(with exit status)
**/

118

void fatalError(string errString){
valueCheck C;
if (!C.is_str(errString)){

cout<<"Error String passed contains invalid
parameters"<<endl;

exit(1);
}
cout<<"An error occured in processing:"<<endl;
cout<<errString<<endl;
exit(1);

}

};

119

7.3 Appendix B

Appendix B.1: ip2vtgrid.php
<?
/**
**
* This code is meant for conversion of IP numbers and to
a specific grid cell on *
* Virginia Tech's grid layout map available at
http://www.unirel.vt.edu/map/map-overall.html*
* This can be further used for display
purposes(functionality not provided). *
* This code connects to a database called blaster with
table and column specifications as *
* described in the mysql database file.

 *
* In case of questions or comments, please feel free to
contact Rishi Pande at rpande@vt.edu*
* This code is distributed within the confines of the
GPL and come with no guarantees, *
* implied or percieved.

 *

**/

// function to provide database connectivity
function connect($db) {
 $DB_HOST="localhost";
 $DB_NAME=$db;
 $DB_USER="****";
 $DB_PASS="******";
//global $conn, $DB_HOST, $DB_USER, $DB_PASS, $DB_NAME;
 if (!$conn=mysql_connect($DB_HOST,$DB_USER,
$DB_PASS)){
 echo "Connect error:".mysql_error();
 }
 if(!mysql_select_db($DB_NAME,$conn)){
 echo "Select database error".mysql_error();
 }

return $conn;
}

$conn_2 = connect('vt_data');
$select_ips = "select count(*) as count, source from witty
where source like ";
$select_ips .= "'128.173.%' group by source";
$ip_query = mysql_query($select_ips, $conn_2);

120

$conn = connect('blaster');
$count= array();
$comps = array();
echo "grid;count\n";
while ($ip_result_array = mysql_fetch_array($ip_query)){

$ip = $ip_result_array['source'];
//$time = $ip_result_array['time'];
$part = explode('.', $ip);
$part_dec = 0;
foreach($part as $part){

$part_dec = ($part_dec + $part)*256;
}
$decimal = $part_dec/256;
$select_short_name = "Select building from vt_lookup

where start <=";
$select_short_name .= $decimal." and end >=" .

$decimal;
$short_name_query = mysql_query($select_short_name,

$conn) or die("Invalid Query:".mysql_error());
$short_name_array =

mysql_fetch_array($short_name_query);
$short_name = $short_name_array['building'];
$select_long_name = "Select name from vt_region where

building like '%";
$select_long_name .= $short_name."%'";
$long_name_query = mysql_query($select_long_name,

$conn) or die("Invalid vt_region Query:".mysql_error());
$long_name_array =

mysql_fetch_array($long_name_query);
$long_name = $long_name_array['name'];
$select_get_grid = "Select vt_row, vt_column from

building_grid where name like '%";
$select_get_grid .= $long_name."%'";
$get_grid_query = mysql_query($select_get_grid,

$conn);
$get_grid_array = mysql_fetch_array($get_grid_query);
$get_grid_row = $get_grid_array['vt_row'];
$get_grid_col = $get_grid_array['vt_column'];
$select_num_comps = "Select service_count, service_qty

from building_computers where name like
'%".$long_name."%'";

$num_comps_query = mysql_query($select_num_comps,
$conn) or die("Invalid query:".mysql_errno());

$tot_comps = 0;
while($num_comps_row =

mysql_fetch_array($num_comps_query)){
if($num_comps_row['service_type'] == "Ethernet"){

121

$temp_comps = $num_comps_row['service_qty']
* 0.85;

}
else{

$temp_comps = $num_comps_row['service_qty'];
}

$tot_comps += $temp_comps;
}
$comps[$get_grid_row][$get_grid_col] = $tot_comps;

if (!$count[$get_grid_row][$get_grid_col]){
$count[$get_grid_row][$get_grid_col] = 1;

}
else{

$count[$get_grid_row][$get_grid_col] += 1;
}

}
for($i = 'A'; $i <= 'R'; $i++){

for($j =1;$j <= 18; $j++){
echo $i.$j.";";

if($count[$i][$j]){
echo $count[$i][$j]/$comps[$i][$j];

}
else{

echo "0";
}
echo "\n";

}
}

//echo "</html>"
?>

122

Appendix B.2: ip2vttopo.php
<?
/**
**
* This code is meant for conversion of IP numbers and to
a specific subnet on *
* Virginia Tech's network layout map *
* This can be further used for display
purposes(functionality not provided). *
* This code connects to a database called blaster with
table and column specifications as *
* described in the mysql database file.

 *
* In case of questions or comments, please feel free to
contact Rishi Pande at rpande@vt.edu*
* This code is distributed within the confines of the
GPL and come with no guarantees, *
* implied or percieved.

 *

**/

// function to provide database connectivity
function connect($db) {
 $DB_HOST="localhost";
 $DB_NAME=$db;
 $DB_USER="****";
 $DB_PASS="******";
//global $conn, $DB_HOST, $DB_USER, $DB_PASS, $DB_NAME;
 if (!$conn=mysql_connect($DB_HOST,$DB_USER,
$DB_PASS)){
 echo "Connect erroe:".mysql_error();
 }
 if(!mysql_select_db($DB_NAME,$conn)){
 echo "Select database error".mysql_error();
 }

return $conn;
}

$conn_2 = connect('vt_data');
$select_ips = "select count(*) as count, source, time from
slammer where source like ";
$select_ips .= "'128.173.%' group by source having count >
1 order by time";
$ip_query = mysql_query($select_ips, $conn_2);
$conn = connect('blaster');
$count= array();

123

$comps = array();
echo "subnet;count\n";
while ($ip_result_array = mysql_fetch_array($ip_query)){

$ip = $ip_result_array['source'];
$time = $ip_result_array['time'];
$part = explode('.', $ip);
$part_dec = 0;
$tip = 1;
foreach($part as $part){

if($tip == 3){
$subnet = $part;

}
$part_dec = ($part_dec + $part)*256;
$tip++;

}
$decimal = $part_dec/256;
$select_short_name = "Select building, start, end from

vt_lookup where start <=";
$select_short_name .= $decimal." and end >=" .

$decimal;
$short_name_query = mysql_query($select_short_name,

$conn) or die("Invalid Query:".mysql_error());
$short_name_array =

mysql_fetch_array($short_name_query);
$short_name = $short_name_array['building'];
$start = $short_name_array['start'];
$end = $short_name_array['end'];
$select_long_name = "Select name from vt_region where

building like '%";
$select_long_name .= $short_name."%'";
$long_name_query = mysql_query($select_long_name,

$conn) or die("Invalid vt_region Query:".mysql_error());
$long_name = mysql_result($long_name_query, 0);
$select_num_comps = "Select service_count, service_qty

from building_computers where name like
'%".$long_name."%'";

$num_comps_query = mysql_query($select_num_comps,
$conn) or die("Invalid query:".mysql_errno());

$tot_comps = 0;
while($num_comps_row =

mysql_fetch_array($num_comps_query)){
if($num_comps_row['service_type'] == "Ethernet"){

$temp_comps = $num_comps_row['service_qty']
* 0.85;

}
else{

$temp_comps = $num_comps_row['service_qty'];
}

124

$tot_comps += $temp_comps;
}
if(floor(($end-$start)/256) != 0){

$comps[$subnet] = $tot_comps / floor(($end-
$start)/256);

}
else{

$comps[$subnet] = $tot_comps;
}
if (!$count[$subnet]){

$count[$subnet] = 1;
}
else{

$count[$subnet] += 1;
}

}
for($i = 0; $i <= 255; $i++){

echo $i.";";
if($i<100){
$i = "0".$i;
}

if($count[$i]){
if($comps[$i] == 0){

echo $count[$i]/100;
}
else{

echo $count[$i]/$comps[$i];
}

}
else{

echo "0";
}
echo "\n";

}

//echo "</html>"
?>

125

Appendix C

Appendix C.1: geostat.sas
options nodate pageno=1 ls=80;

data geoplot;
infile 'U:\TAConsulting\Rishi\New Folder\geoplot.csv'
dlm=',' firstobs=2;
input row col count_blaster count_slammer count_slapper;
run;

proc print;
run;
data geonew;
set geoplot;
where count_blaster<>-1;
countB=count_blaster*100;
countM=count_slammer*100;
countP=count_slapper*100;
indB=(countB>0);
indM=(countM>0);
indP=(countP>0);
ind=indB+2*indM+4*indP;
run;

proc print;
var row col count_blaster count_slammer count_slapper indB
indM indP ind;
run;
proc gplot data=geonew;
plot row*col=ind/ frame cframe=ligr haxis=axis1
vaxis=axis2;
symbol1 v=dot color=blue i=none;
symbol2 v=dot color=red i=none;
symbol3 v=dot color=green i=none;
symbol4 v=dot color=purple i=none;
symbol5 v=dot color=yellow i=none;
axis1 minor=none;
axis2 minor=none label=(angle=90 rotate=0);
run;

quit;

126

Appendix C. 2: topostat.sas
*bringing topology and virus incidents together - checking
compatibility;
%macro Moran(virus);
proc sort data=&virus;
by k;
proc means data=&virus noprint;
var fraction;
output out=fracmean mean=fracmean;
run;
data &virus;
set &virus;
if _n_=1 then set fracmean;
fraccenter=fraction-fracmean;
fraccenter2=fraccenter**2;
run;
data Moran&virus;
merge topology &virus;
by k;
run;
proc print data=Moran&virus;
where j=1 & fraction=. or w=.;
run;
%mend Moran;
%Moran(blaster);
%Moran(slammer);
%Moran(slapper);

*Further analysis;
%macro I(virus);
data vert&virus;
set &virus (rename=(fraccenter=fraccenter_o));
j+1;
keep j fraccenter_o;
run;
proc sort data=Moran&virus;
by j;
data Moran&virus;
merge Moran&virus vert&virus;
by j;
run;
data Moran&virus;
set Moran&virus;
prod=w*fraccenter*fraccenter_o;
run;
proc means data=Moran&virus sum;

127

var w prod;
output out=sum sum=w prod;
run;
proc means data=&virus;
var fraccenter2;
output out=frac2 mean=fraccenter2;
run;
data a;
merge sum frac2;
I = prod/w/fraccenter2;
sigma2I=fraccenter2;
z=(I+1/(_freq_-1))/sqrt(sigma2I);
probz=1-probnorm(z);
run;
proc print data=a;
run;

%mend vert ;

128

Appendix D
Appendix D.1: Permission to reproduce Figure 2

From: cshannon@caida.org
Subject: Re: permission to reproduce image in my

thesis
Date: April 27, 2004 12:55:59 PM EDT

To: rpande@vt.edu
Cc: dmoore@caida.org

Return-Path: <cshannon@login.caida.org>
Received: from steiner.cc.vt.edu (evil-

steiner.cc.vt.edu [10.1.1.14]) by
lyta.cc.vt.edu (iPlanet Messaging Server
5.2 Patch 1 (built Aug 19 2002)) with
ESMTP id <0HWU00LD79PG4K@lyta.cc.vt.edu>
for rpande@ims-ms-daemon (ORCPT
rpande@vt.edu); Tue, 27 Apr 2004 12:56:05
-0400 (EDT)

Received: from login.caida.org (login.caida.org
[192.172.226.78]) by steiner.cc.vt.edu
(MOS 3.4.6-GR) with ESMTP id AQR26058;
Tue, 27 Apr 2004 12:56:01 -0400 (EDT)

Received: from login.caida.org (localhost
[127.0.0.1]) by login.caida.org
(8.12.10/8.12.10) with ESMTP id
i3RGtxbV062670 (version=TLSv1/SSLv3
cipher=EDH-RSA-DES-CBC3-SHA bits=168
verify=NO); Tue, 27 Apr 2004 09:55:59 -
0700 (PDT)

Received: (from cshannon@localhost) by
login.caida.org (8.12.10/8.12.10/Submit)
id i3RGtx27062669; Tue, 27 Apr 2004
09:55:59 -0700 (PDT)

In-Reply-To: <6C54D138-9869-11D8-92D0-
000393793B04@vt.edu>

Message-Id:
<20040427165559.GO59283@login.caida.org

>
Mime-Version: 1.0
Content-Type: text/plain; charset=us-ascii

Content-Disposition: inline
User-Agent: Mutt/1.4.2.1i

X-Junkmail-Status: score=0/50, host=steiner.cc.vt.edu
References: 6C54D138-9869-11D8-92D0-

000393793B04@vt.edu

Hi Rishikesh,

129

It's fine for you to use our image in your thesis. We'd also be
very interested in the content of your thesis whenever it becomes
available.

-C

--
Colleen Shannon
CAIDA/SDSC/UCSD - cshannon@caida.org

On Tue, Apr 27, 2004 at 12:39:16PM -0400, Rishikesh Pande wrote:
Hello,

I am graduate student at Virginia Tech working on my masters
research "Using plant epidemiological methods to track network worms".
I am currently writing my thesis draft and would like permission to
reproduce a figure from your analysis of the Code-Red V 2 worm on the
CAIDA network. The said figure is labeled figure 2 in the paper and
shows the time-series spread of the CR v2 worm. I have attached a copy
of the figure with this e-mail and it is also available on the Internet
at
http://www.caida.org/analysis/security/code-red/gifs/cumulative-ts.gif

I plan on using the following reference for the figure.
Moore, Shannon (2001) "The spread of the code-red worm (CR v2)", CAIDA,
<http://www.caida.org/analysis/security/code-red/coderedv2_analysis.xml>

My thesis will be available for reading from the Virginia Tech
ETD (www.etd.vt.edu) library after graduation.

Thank you very much. I look forward to hearing back from you.
Sincerely,
Rishikesh Pande

130

Appendix D.2: Permission to reference Travis et al. (2003)

From: greg@iu.edu
Subject: Re: REN-ISAC virus data + Slammer Analysis

Date: May 3, 2004 9:52:13 AM EDT
To: rpande@vt.edu

Return-Path: <greg@iu.edu>
Received: from steiner.cc.vt.edu (evil-steiner.cc.vt.edu

[10.1.1.14]) by lyta.cc.vt.edu (iPlanet Messaging
Server 5.2 Patch 1 (built Aug 19 2002)) with
ESMTP id <0HX500I1V574P0@lyta.cc.vt.edu>
for rpande@ims-ms-daemon (ORCPT
rpande@vt.edu); Mon, 03 May 2004 09:52:17 -
0400 (EDT)

Received: from paintbird.ucs.indiana.edu
(paintbird.ucs.indiana.edu [156.56.103.100]) by
steiner.cc.vt.edu (MOS 3.4.6-GR) with ESMTP
id ART37190; Mon, 03 May 2004 09:52:13 -0400
(EDT)

Received: from [156.56.103.3] (turtleneck.ucs.indiana.edu
[156.56.103.3]) (authenticated bits=0) by
paintbird.ucs.indiana.edu (8.12.10/8.12.10) with
ESMTP id i43DpnuO025533
(version=TLSv1/SSLv3 cipher=RC4-SHA
bits=128 verify=NO) for <rpande@vt.edu>; Mon,
03 May 2004 08:52:13 -0500

In-Reply-To: <4F6201D0-9C56-11D8-92D0-
000393793B04@vt.edu>

Message-Id: <149B22EA-9D09-11D8-9186-
000A95A7EA10@iu.edu>

Mime-Version: 1.0 (Apple Message framework v613)
X-Mailer: Apple Mail (2.613)

Content-Type: text/plain; format=flowed; charset=WINDOWS-
1252

Content-Transfer-Encoding: quoted-printable
X-Junkmail-Status: score=0/50, host=steiner.cc.vt.edu

References: <1F17769B-423C-11D8-986B-000393BB2B90@iu.edu>
4F6201D0-9C56-11D8-92D0-000393793B04@vt.edu

Rishi,

That would be fine.

131

Thanks,

greg

On May 2, 2004, at 11:32 AM, Rishikesh Pande wrote:

Dear Mr. Travis,
You may remember that we spoke earlier in the year about analysis of

worms. At the time, you passed me a document containing a SQL slammer
report as seen by Abilene. I was wondering if I can have your permission to
reference the report in my thesis. I plan to use the following citation:
1. Travis G., Balas, E., Ripley, D. and Wallace, S. (2003),“Analysis of SQL
Slammer worm and it’s effects on Indiana University and related institutions”,
University of Indiana, Technical Report

Please let me know. Thank you very much.
Sincerely,
Rishi Pande

132

Curriculum Vitae
Rishikesh Pande

6000, Heather Drive, #K
Blacksburg, VA 24060

 Phone No: 540-239-2948
 Email: rpande@vt.edu

Education:

Master of Science (Computer Science), (GPA: 3.26)
Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, Virginia
Thesis: Advanced warning system prototype for agent based Intrusion Detection System

May 2004
(Expected)

Bachelor of Engineering (Electronics)
University of Mumbai, Mumbai, India

May 2001

Computer Skills:

 Languages
 C, C++, Java
 PERL, PHP, Unix shell scripting
 UML, ERD
 Visual Basic.NET, ASP.NET, ADO
 SQL, PL/SQL, XML

Applications
 Gdb, gcc, g++
 Rational Suite
 Visual Studio, Visual Studio.NET
 Zend, Project Builder
 LDAP, SSL, Tcpdump

 Operating Systems
 All Windows Systems
 Mac OS 9, OS X
 Unix (Linux and BSD)

Course Projects:

Computer Supported Co-op Work ∗ Usability evaluation of BrightSuite (Intranet Team-collaboration software)
∗ Design location based collaboration system for spatially oriented task co-ordination

Software Engineering ∗ Design a client-server J2EE architecture for a dot-com company using UML

Information Storage and Retrieval ∗ Implement a very fast vector-space search engine for the Open Archives Initiative

Operating Systems ∗ Simulation of Multi-programming batch operating system
∗ Implementation of Multi-player Othello game

Digital Libraries ∗ Design and development of an archeological digital library (NSF funded project)

Coursework:

∗ Decision Support Systems: design and evaluation
∗ Usability Engineering

∗ Information Visualization
∗ System and Network Security (Audit)

Work Experience:

Technical Assistant, Digital Library and Archives, Virginia Tech, Blacksburg, VA (continued)
∗ Electronic Thesis and Dissertation (ETD-db) ver 2: enhance product with XML, SSL, OOP, etc
∗ E-docs: design, development & testing application for university research papers archive.
∗ ETD- design and development for the electronic theses submission web-pages
∗ Misc: system administration tasks, maintain & update legacy databases and websites

Aug 2003- present,
Sept 2002 –
May 2003

Research Student, Information Technology Security Lab, Virginia Tech, Blacksburg, VA
∗ Project: Advanced warning system prototype for D-Shield Intrusion Detection System
∗ Research and design early attack warning system for Distributed Intrusion Detection System
∗ Development of LAN-geographic prediction agent based on epidemiological models

Aug 2003-present

Intern, University Libraries, Virginia Tech, Blacksburg, VA
∗ Security analysis/ management for intranet using penetration tests, setup of firewall (ipfw), IDS
∗ International Archive of Women in Architecture -design and modify database, implement new

design for website user/admin interfaces, design and implement weight based search engine
∗ Develop in-house applications for auto-updates of OS x boxes, bulk updates to databases

June 2003-
Aug 2003

Research Student, Center for Human-Computer Interaction, Virginia Tech, Blacksburg, VA
∗ Project: Location Based Services for MOOsburg
∗ Use scenario- based design methodologies to implement a wireless location enabled reminder

Jan 2002-
May 2003

Intern, Motech Software Pvt. Ltd., Mumbai, India
∗ Involved in the design, development & testing of a Convergence Billing System-MDR
∗ Developed prototype of real-time billing system for convergent Internet Service Providers

Aug 2000-
April 2001

Presentations/ Activities:

∗ Torgersen Research Excellence award (M.S. -Poster), Virginia Tech 2004
∗ Presentation: “MIDS: Taking DIDS into the enterprise”, SANSFIRE, Monterey, CA 2004
∗ Director, Travel Fund Program, Graduate Students Assembly, Virginia Tech 2002-2003

